Damage Prognosis: For Aerospace, Civil and Mechanical Systems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Damage prognosis is a natural extension of damage detection and structural health monitoring and is forming a growing part of many businesses. This comprehensive volume presents a series of fundamental topics that define the new area of damage prognosis. Bringing together essential information in each of the basic technologies necessary to perform damage prognosis, it also reflects the highly interdisciplinary nature of the industry through the extensive referencing of each of the component disciplines. Taken from lectures given at the Pan American Advanced Studies Institute in Damage Prognosis sponsored by the US National Science Foundation in cooperation with Los Alamos National Laboratories, this book will be essential reading for anyone looking to get to grips with the fundamentals of damage prognosis. - Presents the 'ground rules' for Damage Prognosis.- Deals with interdisciplinary topics: rotating machines, aerospace structures, automotive components and civil structures.- Covers essential technical material: equations, graphs and plots, tables and photographs.- Offers additional material from the associated workshop on an active web site.

Author(s): Inman D.J., Farrar C.R., Junior V.L.
Year: 2005

Language: English
Pages: 249

Damage Prognosis......Page 3
Contents......Page 7
List of Contributors......Page 13
Preface......Page 20
1.1 Introduction......Page 23
1.2 The Damage-Prognosis Solution Process......Page 26
1.3 Motivation for Damage-Prognosis Solutions......Page 30
1.5 Summary......Page 33
References......Page 34
Part I Damage Models......Page 35
2.1 Introduction......Page 37
2.2 Overview of General Modeling Issues......Page 39
2.3 Characterization of Material Behavior: Damage Initiation and Evolution......Page 45
2.4 Material Modeling: General Considerations and Preliminary Concepts......Page 48
2.5 Classical Damage-Modeling Approaches......Page 51
2.6 Phenomenological Constitutive Modeling......Page 57
2.7 Micromechanical Modeling of Materials......Page 59
2.8 Summary......Page 77
References......Page 78
3.1 Overview of Fracture Mechanics Related to Damage Prognosis......Page 83
3.2 In Situ Observation of Damage Evolution and Fracture Toughness Measurement......Page 86
References......Page 95
4.1 Introduction......Page 97
4.2 Damage and Fracture Mechanics Theories......Page 99
4.3 Boundary Element Fracture Mechanics......Page 103
4.4 Predictive Modeling of Crack Propagation......Page 106
4.5 Numerical Results......Page 108
4.6 Conclusions......Page 110
References......Page 111
5.1 Preliminary Remarks......Page 113
5.2 Nonlinear Dynamics of Ideal and Nonideal Stick–Slip Vibrations......Page 119
5.3 Switching Control for Ideal and Nonideal Stick–Slip Vibrations......Page 125
5.4 Some Concluding Remarks......Page 129
References......Page 130
6.1 Introduction......Page 133
6.2 Theoretical Fundamentals......Page 134
6.3 Application......Page 140
References......Page 150
Part II Monitoring Algorithms......Page 153
7.1 Introduction......Page 155
7.2 Theory of Discrete Vibrating Systems......Page 156
7.3 Response Sensitivity......Page 161
7.4 Finite-Element Model Updating......Page 164
7.5 Review of Classical Optimization Techniques......Page 171
7.6 Heuristic Optimization Methods......Page 173
7.7 Multicriteria Optimization......Page 177
7.8 General Optimization Scheme for Inverse Problems in Engineering......Page 178
7.9 Applications......Page 179
References......Page 195
8.1 Initial Considerations about SHM......Page 199
8.2 Optimal Placement of Sensors and Actuators for Smart Structures......Page 201
8.3 Proposed Methodology......Page 208
8.4 Artificial Neural Network as a SHM Algorithm......Page 210
8.5 Genetic Algorithms as a SHM Algorithm......Page 216
8.6 Conclusion......Page 219
References......Page 220
9.1 Introduction......Page 223
9.2 Verification Activities......Page 224
9.3 Validation Activities......Page 229
9.4 Uncertainty Quantification......Page 234
9.5 Assessment of Prediction Accuracy......Page 236
9.6 Conclusion......Page 239
References......Page 240
10.1 Introduction......Page 243
10.2 Reliability Assessment......Page 244
10.3 Approximation of the Probability of Failure......Page 249
10.4 Decision Making......Page 253
10.5 Summary......Page 255
References......Page 256
11.1 Introduction......Page 257
11.2 Fundamentals of Elastic Wave Propagation......Page 259
11.3 Application of Lamb-Wave Formulation to SHM......Page 273
11.4 Epilogue......Page 278
References......Page 279
12.1 Introduction......Page 281
12.2 Power and Intensity Concepts......Page 282
12.3 Experimental Power Flow Techniques......Page 285
12.4 Spatial Filtering for Fault Detection......Page 289
12.5 Acoustical Measurements as a Tool for Fault Detection......Page 290
12.6 Detecting Nonlinearity with Special Excitation Signals......Page 291
12.7 Frequency Limits of Numerical Modeling Techniques – The Midfrequency Problem......Page 292
References......Page 294
13.1 Introduction......Page 297
13.2 Electro-Mechanical Principle......Page 298
13.3 Parameters of the Technique......Page 299
13.4 Comparisons with Other Damage Identification Approaches......Page 302
13.6 Health Assessment of Pipeline Structures......Page 304
13.7 Analysis of a Quarter Scale Bridge Section......Page 309
13.8 Summary......Page 312
References......Page 313
14.1 Introduction......Page 315
14.2 Statistical Pattern Recognition Paradigm......Page 316
14.3 Experimental Results......Page 323
References......Page 324
Part III Hardware......Page 327
15.1 Introduction......Page 329
15.2 Sensing and Data Acquisition Strategies for Damage Prognosis......Page 330
15.3 Instrumentation: Conceptual Challenges......Page 332
15.4 Summary: Sensing and Data Acquisition......Page 342
References......Page 343
16.1 Introduction......Page 345
16.2 Active Sensor Network for Structural-Health Monitoring Systems......Page 347
16.3 Diagnostic Software......Page 353
16.4 Validation of the Active SHM System......Page 358
16.5 Conclusions......Page 361
References......Page 362
17.2 Basic Optics Concepts......Page 365
17.3 Primary Fiber Optic Sensing Approaches for Structural Measurements......Page 368
17.4 Summary......Page 381
References......Page 382
Part IV Applications......Page 385
18.1 Introduction......Page 387
18.2 Applications......Page 389
Acknowledgments......Page 404
References......Page 405
19.1 Introduction......Page 407
19.2 Bearing Prognosis Framework......Page 408
19.3 Model-Based Analysis for Prognosis......Page 414
19.4 Bearing Prognosis Discussion......Page 423
19.5 Gear Prognosis Framework......Page 424
19.6 Bearing and Gear Prognosis Module Discussion......Page 435
19.7 Utilization of Prognosis Information in Navy ICAS System......Page 436
References......Page 441
20.1 Introduction......Page 443
20.2 Influences of the Environment and Operating Conditions in the Behavior of the Generating Units......Page 445
20.3 Statistical Models for Structural Health Monitoring......Page 450
20.5 Terminology......Page 454
References......Page 455
Index......Page 457