Методы интегрирования уравнений с частными производными : [монография]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных уравнений, подробно описан новый способ интегрирования - метод линейных определяющих уравнений.
С характеристиками систем уравнений связываются инвариантные тензоры и интегральные инварианты, обсуждаются локальные законы сохранения. В качестве приложений рассмотрены математические модели механики сплошной среды - от гидродинамики до нелинейной теплопроводности.
Книга рассчитана на широкий круг читателей - математиков, механиков, физиков, преподавателей вузов и студентов.

Author(s): Капцов, Олег Викторович
Publisher: Физматлит
Year: 2009

Language: Russian
Pages: 182 с
City: Москва
Tags: Математика;Дифференциальные уравнения;Дифференциальные уравнения в частных производных;

 
Введение.
Инвариантность.
Интегральные многообразия и системы Пфаффа.
Инвариантность и группы преобразований.
Инвариантные решения модели дальнего турбулентного следа.
Характеристики уравнений второго порядка и их инварианты.
Применение инвариантов характеристик к интегрированию уравнений второго порядка.
Инварианты характеристик систем уравнений первого порядка.
Метод Дарбу для систем уравнений первого порядка.
Инвариантные формы и интегральные инварианты.
Инвариантные тензоры и их приложения к дифференциальным.
уравнениям с частными производными.
Преобразования и решения уравнений с частными производными.
Преобразования конечного порядка и эквивалентность уравнений.
Каскадный метод Лапласа.
Уравнение Эйлера-Пуассона-Дарбу.
Преобразования Эйлера-Дарбу линейных дифференциальных уравнений с частными производными.
Преобразование Мутара.
Преобразования линейных обыкновенных дифференциальных уравнений и цепочки Тоды. Применение преобразований для построения решений нелинейных.
уравнений с частными производными.
Линейные, билинейные и нелинейные уравнения, связанные преобразованиями конечного порядка.
Решения двумерных стационарных уравнений Эйлера.
Преобразование Беклунда. 114.
Определяющие уравнения и дифференциальные связи.
Инвариантные многообразия эволюционных уравнений.
Линейные определяющие уравнения.
Нелинейное уравнение теплопроводности с источником и уравнение.
Гиббонса-Царева.
Применение метода ЛОУ к системе диффузионных уравнений.
Редукция параболической системы к одному уравнению.
Законы сохранения.