В монографии представлен ряд методов построения точных решений линейных и нелинейных уравнений с частными производными. Изложение ведется в рамках двух основных парадигм: непрерывные преобразования и инвариантность. Особое внимание уделяется таким подходам, как методы интегрирования Дарбу, Эйлера, Беклунда, Мутара. Дано обобщение классических методов для систем дифференциальных уравнений, подробно описан новый способ интегрирования - метод линейных определяющих уравнений.
С характеристиками систем уравнений связываются инвариантные тензоры и интегральные инварианты, обсуждаются локальные законы сохранения. В качестве приложений рассмотрены математические модели механики сплошной среды - от гидродинамики до нелинейной теплопроводности.
Книга рассчитана на широкий круг читателей - математиков, механиков, физиков, преподавателей вузов и студентов.
Author(s): Капцов, Олег Викторович
Publisher: Физматлит
Year: 2009
Language: Russian
Pages: 182 с
City: Москва
Tags: Математика;Дифференциальные уравнения;Дифференциальные уравнения в частных производных;
Введение.
Инвариантность.
Интегральные многообразия и системы Пфаффа.
Инвариантность и группы преобразований.
Инвариантные решения модели дальнего турбулентного следа.
Характеристики уравнений второго порядка и их инварианты.
Применение инвариантов характеристик к интегрированию уравнений второго порядка.
Инварианты характеристик систем уравнений первого порядка.
Метод Дарбу для систем уравнений первого порядка.
Инвариантные формы и интегральные инварианты.
Инвариантные тензоры и их приложения к дифференциальным.
уравнениям с частными производными.
Преобразования и решения уравнений с частными производными.
Преобразования конечного порядка и эквивалентность уравнений.
Каскадный метод Лапласа.
Уравнение Эйлера-Пуассона-Дарбу.
Преобразования Эйлера-Дарбу линейных дифференциальных уравнений с частными производными.
Преобразование Мутара.
Преобразования линейных обыкновенных дифференциальных уравнений и цепочки Тоды. Применение преобразований для построения решений нелинейных.
уравнений с частными производными.
Линейные, билинейные и нелинейные уравнения, связанные преобразованиями конечного порядка.
Решения двумерных стационарных уравнений Эйлера.
Преобразование Беклунда. 114.
Определяющие уравнения и дифференциальные связи.
Инвариантные многообразия эволюционных уравнений.
Линейные определяющие уравнения.
Нелинейное уравнение теплопроводности с источником и уравнение.
Гиббонса-Царева.
Применение метода ЛОУ к системе диффузионных уравнений.
Редукция параболической системы к одному уравнению.
Законы сохранения.