Current Topics in Atomic, Molecular and Optical Physics: Invited Lectures Delivered at the Conference on Atomic Molecular and Optical Physics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The breadth, scope and volume of research in atomic, molecular and optical (AMO) physics have increased enormously in the last few years. Following the widespread use of pulsed lasers, certain newly emerging areas as well as selected mature subfields are ushering in a second renaissance. This volume focuses on current research in these crucial areas: cold atoms and Bose-Einstein condensates, quantum information and quantum computation, and new techniques for investigating collisions and structure. The topics covered include: the multireference coupled cluster method in quantum chemistry and the role of electronic correlation in nanosystems; laser cooling of atoms and theories of the Bose-Einstein condensate; and quantum computing and quantum information transfer using cold atoms and shaped ultrafast pulses. Other articles deal with recent findings in heavy ion collisions with clusters, time-of-flight spectroscopy techniques, and a specific example of a chaotic quantum system. The contributions will greatly assist in the sharing of specialized knowledge among experts and will also be useful for postgraduate students striving to obtain an overall picture of the current research status in the areas covered.

Author(s): Chandana Sinha, Shibshankar Bhattacharyya
Publisher: World Scientific Publishing Company
Year: 2006

Language: English
Pages: 285

CONTENTS......Page 8
Preface......Page 6
1. Introduction......Page 11
2. Theoretical considerations......Page 12
3. Electron localization and dynamical control in semiconductor double quantum wells......Page 14
4. Driven electron dynamics in mesoscopic rings......Page 18
5. Pulse-induced electron removal from a quantum dot......Page 25
References......Page 28
1. Introduction......Page 31
2. Time-dependent calculation of ground and excited states of one-dimensional nonlinear oscillators......Page 33
3. Responses of an electron in symmetric and asymmetric DWOs under intense laser fields......Page 35
4. Multiphoton vibrational dynamics of Morse oscillators in intense laser fields......Page 38
5. Conclusion......Page 40
References......Page 42
1. Introduction......Page 45
2. Basic techniques......Page 46
3. Optically Plugged Quadrupole Trap at Georgia Tech......Page 48
4. Theory of the Weakly Interacting Bose Gas......Page 50
5. Metastable BEC in a linear potential......Page 51
6. Bragg Scattering from Rotating Condensates......Page 53
7. Conclusion......Page 58
References......Page 59
Introduction......Page 61
Cooling and Trapping......Page 62
Cooling and trapping experiment at Calcutta University......Page 63
References......Page 66
Pair-Correlation in Bose-Einstein Condensate and Fermi Superfluid of Atomic Gases......Page 67
1. Introduction......Page 68
2. A comparison between BEC and BCS states......Page 69
3. BCS state of trapped Fermi gas of atoms......Page 71
4. Stimulated light scattering in Cooper-paired Fermi atoms......Page 72
6. Conclusion and outlook......Page 76
References......Page 77
1. Introduction......Page 79
2. Theory......Page 81
3. Results and Discussion......Page 83
4. Conclusion......Page 95
References......Page 96
1. Introduction......Page 99
2. Theory......Page 100
References......Page 113
1. Introduction......Page 115
2. Model and Mean-Field Approximation......Page 116
3. Results and Discussions......Page 120
References......Page 128
1. Introduction......Page 131
2. Two-qubit π conditional phase gate......Page 135
3. Conclusions......Page 140
References......Page 141
2. Experimental Setup......Page 143
3. Results and Discussion......Page 145
4. Qubit Realization and Optical Network......Page 147
5. Experimental Developments......Page 149
6. Conclusion......Page 150
References......Page 151
1. Introduction......Page 153
2. The generation of atomic entanglement in cavities......Page 155
3. The monogamous nature of entanglement......Page 160
References......Page 165
1. Introduction......Page 169
2. The projected Perron-Frobenius Operator for Billiards: Eigenvalues and Eigenfunctions......Page 171
3. The quantum connection: numerical evidence......Page 172
References......Page 176
Abstract......Page 179
1.1 Introduction......Page 180
1.2 Non-variational variants of MRSDCI......Page 182
1.3 Recent important results......Page 188
1.4 Summary......Page 192
Bibliography......Page 194
2. Analytical Continuation of the Hamiltonian......Page 197
3. Negative Ion Resonances......Page 202
4. CAP method in the Fock space Coupled Cluster theoretical framework......Page 203
5. Conclusion......Page 206
References......Page 207
1 Introduction......Page 209
2 Relativistic coupled-cluster theory......Page 210
4 Hyperfine shift......Page 212
5 Results and discussions......Page 214
6 Conclusion......Page 215
References......Page 216
1. Introduction......Page 219
2. Experimental Details......Page 222
3. Theoretical models......Page 224
4. Results and Discussions......Page 227
5 Conclusions......Page 235
7 References......Page 236
1. Introduction......Page 239
2. Information from time-of-flight spectra......Page 240
3. Application to dissociative ionisation......Page 241
References......Page 244
1. General Introduction......Page 247
2. Basics of Nonlinear Optics......Page 248
3. Physical Origin of Nonlinear Optical Phenomena......Page 250
4. Materials for Nonlinear Optics......Page 253
5. Optical absorption of metal nanocluster-glass composites......Page 256
6. Ion Implantation: Synthesis of Metal Nanoclusters......Page 265
7. Characterizations of the Metal Nanocluster-Glass Composites......Page 266
References......Page 273
1 Introduction......Page 275
2 Cold atoms as probe for atom-surface interaction......Page 276
3 Principle of magnetic atom mirror......Page 277
5 The magnetic atom-mirror experiment at TIFR......Page 278
6 Measurement of the van der Waals force......Page 280
7 Conclusion......Page 283
References......Page 284