Crystals and rigged configurations

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Travis Scrimshaw
Series: PhD thesis at University of California, Davis
Year: 2015

Language: English

1 Introduction 1
1.1 Physics and mathematics . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Summary of the main results . . . . . . . . . . . . . . . . . . . . . . . 10
2 Background 13
2.1 Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Simple subalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Rigged configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Virtual crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 U 1
q pgq-rigged configurations . . . . . . . . . . . . . . . . . . . . . . . .
32
2.6 Kirillov-Reshetikhin crystals . . . . . . . . . . . . . . . . . . . . . . . 36
2.7 The (virtual) Kleber algorithm . . . . . . . . . . . . . . . . . . . . . 42
3 Generalizing rigged configurations 44
3.1 Rigged configuration model for Bp8q in simply-laced finite type . . . 44
3.2 Extending Theorem 3.1.9 to arbitrary simply-laced Kac–Moody algebras 53
3.3 Extending Theorem 3.1.9 to non-simply-laced Lie algebras . . . . . . 56
3.3.1 Extending Theorem 3.1.9 to all finite types . . . . . . . . . . . 56
3.3.2 Recognition Theorem . . . . . . . . . . . . . . . . . . . . . . . 60
3.4 Projecting from RCp8q to RCpλq . . . . . . . . . . . . . . . . . . . . 68
4 Rigged configurations and KR tableaux 72
4.1 Crystal operators on rigged configurations in non-simply-laced types . 72
4.1.1 Virtualization map . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.2 Crystal operators . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 The filling map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Filling map for type D p1q
n
. . . . . . . . . . . . . . . . . . . . . 78
4.2.2 Filling map for type C p1q
n
. . . . . . . . . . . . . . . . . . . . . 83
4.2.3 Filling map for type A p2q
2n?1
. . . . . . . . . . . . . . . . . . . . 89
4.2.4 Filling map for type B p1q
n
. . . . . . . . . . . . . . . . . . . . . 91
4.2.5 Filling map for type A p2q
2n
. . . . . . . . . . . . . . . . . . . . . 95
4.2.6 Filling map for type A p2q:
2n
. . . . . . . . . . . . . . . . . . . . 96
4.2.7 Filling map for type D p2q
n?1
. . . . . . . . . . . . . . . . . . . . 97
4.2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Affine crystal strucutre . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.1 Affine crystal operators . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 Virtualization as affine crystals . . . . . . . . . . . . . . . . . 109
4.3.3 Extension to r ? n . . . . . . . . . . . . . . . . . . . . . . . . 111
4.4 The virtualization map and Φ . . . . . . . . . . . . . . . . . . . . . . 112
4.4.1 Single tensor factors . . . . . . . . . . . . . . . . . . . . . . . 112
4.4.2 General case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5 Future work 118
5.1 Extensions and future work . . . . . . . . . . . . . . . . . . . . . . . 118
A Extension of Theorem 2.4.8 123
B Calculations using Sage 136