The Talbot's go where Mars Fontana doesn't... This book is not for the person that may be intimidated by material science! A thorough discussion on the thermodynamic aspects yields an in-depth understanding of the Pourbaix diagrams, while the kinetic discussions go well beyond Faraday's Law. Chapters dedicated to specific industries (aviation, automotive, food processing, and building construction) provide additional insight into practical corrosion issues. Despite the highly-theoretical treatment of most corrosion mechanisms, cathodic protection methods are not given adequate coverage for problem solving.
Author(s): David Talbot, James Talbot
Series: Materials Science & Technology
Edition: 1
Publisher: CRC-Press
Year: 1997
Language: English
Pages: 390
CORROSION SCIENCE and TECHNOLOGY......Page 3
Contents......Page 5
Preface......Page 12
The Authors......Page 14
Acknowledgments......Page 15
1.1.1 Corrosion as a System Characteristic......Page 16
1.1.2 The Electrochemical Origin of Corrosion......Page 17
1.1.3 Stimulated Local Corrosion......Page 18
1.2.1 Protective Oxides......Page 19
1.4.1 Passivity......Page 20
1.4.3 Cathodic Protection......Page 21
1.4.6 Criteria for Corrosion Failure......Page 22
1.4.7 Material Selection......Page 23
1.5.1 Ions and Ionic Equations......Page 25
1.5.2 Partial Reactions......Page 26
Active Dissolution of Iron with Oxygen Absorption......Page 27
Passivity of Iron in Alkaline Water......Page 28
Further Reading......Page 29
2.1.1 Phases......Page 30
2.1.1.1 Crystalline Solids......Page 31
The Face-Centered Cubic (FCC) Lattice......Page 32
The Simple Cubic Lattice......Page 34
2.1.1.2 Liquids......Page 35
2.1.2 The Role of Electrons in Bonding......Page 36
2.1.2.1 Atomic Orbitals......Page 37
2.1.2.2 Molecular Orbitals and Bonding of Atoms......Page 39
2.1.3 The Concept of Activity......Page 41
2.2.1 The Nature of Water......Page 42
2.2.3 Liquid Water......Page 43
2.2.3.1 Hydrogen Bonding......Page 44
2.2.3.2 Dielectric constant......Page 45
2.2.4 Autodissociation and pH of Aqueous Solutions......Page 46
2.2.5 The pH Scale......Page 47
2.2.6 Foreign Ions in Solution......Page 48
2.2.7 Ion Mobility......Page 50
2.2.8 Structures of Water and Ionic Solutions at Metal Surfaces......Page 52
2.2.9.1 Rainwater......Page 53
Example 2:pH of rainwater......Page 54
Example 3:pH of a representative hard water......Page 56
Solution:......Page 57
2.3 The Structures of Metal Oxides......Page 58
2.3.1 Electronegativity......Page 59
2.3.2 Partial Ionic Character of Metal Oxides......Page 60
2.3.3 Oxide Crystal Structures......Page 61
2.3.3.4 Spinel Structures......Page 63
2.3.4 Conduction and Valence Electron Energy Bands......Page 64
2.3.5 The Origins of Lattice Defects in Metal Oxides......Page 65
2.3.5.1 General Approach......Page 66
2.3.5.2 Configurational Entropy of Atoms or Ions on a Lattice......Page 67
2.3.5.3 Equilibrium Number of Defects......Page 68
2.3.5.4 Natures of Defects in Oxide Lattices......Page 69
2.3.6 Classification of Oxides by Defect Type......Page 70
2.3.6.2 Cation Excess Oxides......Page 71
2.3.6.3 Cation Deficit Oxides......Page 72
2.3.6.4 Anion Deficit Oxides......Page 73
2.4 The Structures of Metals......Page 74
Contraction During Solidification......Page 82
Texture......Page 83
2.4.1 The Metallic Bond......Page 75
2.4.3 Phase Equilibria......Page 76
2.4.3.1 Solid Solutions......Page 77
2.4.3.2 Eutectic Transformations......Page 78
2.4.3.3 Peritectic Transformations......Page 79
2.4.3.6 Real systems......Page 80
Further Reading......Page 84
3.1.1.1 Oxidation States......Page 85
3.1.1.2 Electrodes......Page 87
3.1.2 Equilibria at Electrodes and the Nernst Equation......Page 88
3.1.3 Standard State for Activities of Ions in Solution......Page 89
3.1.4.1 Convention for Representing Electrodes at Equilibrium......Page 90
3.1.4.3 The Standard Hydrogen Electrode......Page 91
Solution:......Page 93
3.1.5.1 Principle and Purpose......Page 94
Selection of Species and Reactions:......Page 95
Calculations:......Page 96
Plotting Lines on the Diagram:......Page 98
The Complete Diagram:......Page 99
3.1.5.3 The Domain of Stability for Water......Page 100
3.1.5.4 Application of Pourbaix Diagrams to Corrosion Problems......Page 101
3.1.5.5 Pourbaix (Potential-pH) Diagrams for Some Common Metals......Page 102
Solution:......Page 105
The Solid Oxides Cu2O and CuO:......Page 107
3.1.5.6 Limitations of Pourbaix Diagrams......Page 108
3.2 Kinetics of Aqueous Corrosion......Page 109
3.2.1 Kinetic View of Equilibrium at an Electrode......Page 110
3.2.2.1 Activation Polarization......Page 111
The Symmetry Factor, a......Page 113
3.2.2.2 Concentration Polarization......Page 114
3.2.2.4 The Hydrogen Evolution Reaction and Hydrogen Overpotential......Page 116
Solution:......Page 117
3.2.3 Polarization Characteristics and Corrosion Velocities......Page 119
3.2.3.1 Corrosion Velocity Diagrams......Page 120
Example 9......Page 121
Solution:......Page 122
3.2.4.1 Spontaneous Passivation......Page 124
3.2.4.3 Theories of Passivation......Page 125
Adsorption Theory......Page 126
3.2.5 Breakdown of Passivity......Page 127
Pitting......Page 128
3.2.6 Corrosion Inhibitors......Page 129
3.2.6.1 Cathodic Inhibitors......Page 130
Self-Sufficient Oxidizing Inhibitors......Page 131
Safe and Dangerous Inhibitors......Page 132
3.3.1 Factors Promoting the Formation of Protective Oxides......Page 133
3.3.2 Thin Films and the Cabrera-Mott Theory......Page 134
3.3.3 Thick Films, Thermal Activation and the Wagner Theory......Page 135
Interface Equilibria......Page 136
Atomic Mechanisms......Page 137
Atomic Mechanisms......Page 138
3.3.3.4 Oxidation of Metals Forming Stoichiometric Ionic Oxides......Page 139
Electrical Conductivities of n-type and p-type oxides......Page 140
Valency Effects in Semi-conducting oxides......Page 141
3.3.3.8 Loss of Integrity of Protective Oxides......Page 142
3.3.4.1 Principles......Page 143
Example 10......Page 146
Solution:......Page 147
The Iron-Chromium-Oxygen System......Page 148
Further Reading......Page 150
Problems for Chapter 3......Page 151
Solution to Problem 1.......Page 153
Solution to Problem 3.......Page 154
Solution to Problem 4.......Page 155
Solution to Problem 5.......Page 156
Solution to Problem 6.......Page 157
Example 2.The Aluminum–Water System......Page 158
Example 3.The Zinc-Water System......Page 159
Example 4.The Copper-Water System......Page 162
Example 5.The Tin-Water System......Page 164
Example 6.The Nickel-Water System......Page 166
4.1 Galvanic Stimulation......Page 168
4.1.2 The Origin of the Bimetallic Effect......Page 169
4.1.3.1 Active and Weakly Passive Metals......Page 170
4.1.3.2 Active/Passive Couples......Page 171
4.1.3.4 Compatibility Groups......Page 172
4.1.3.5 Indirect Stimulation......Page 173
Example......Page 175
4.2.1 Principle......Page 176
Galvanic Protection of Steel by Coatings......Page 177
4.3 Cathodic Protection by Impressed Current......Page 178
Further Reading......Page 180
5.1.1 Characteristic Features......Page 181
5.1.2.1 Susceptible Alloys......Page 183
Grain Boundary Precipitation......Page 184
Hydrogen Embrittlement......Page 185
5.1.3.1 Brief Description of Phenomena......Page 186
5.1.3.4 Mechanisms......Page 187
5.1.4.1 Brief General Description of Phenomena......Page 188
5.2.1 Characteristic Features......Page 189
5.2.2.2 Intervention of the Environment......Page 191
5.3.2 Cavitation......Page 192
Stresses......Page 193
Further Reading......Page 194
6.1.1 Surface Conditions of Manufactured Metal Forms......Page 196
Surfaces of Press-Formed Products......Page 197
Weathering......Page 198
Acid Pickling......Page 199
Solvent Degreasing......Page 200
Alkaline Cleaning......Page 201
6.1.2.4 Chemical and Electrochemical Polishing of Aluminum Alloys......Page 202
6.2.1.1 Cathodic and Anodic Reactions......Page 204
6.2.1.2 Hydrogen Discharge......Page 205
6.2.1.3 Throwing Power......Page 206
6.2.2.1 General Considerations......Page 209
6.2.2.3 Other Nickel Plating Processes......Page 211
6.2.4.1 Applications......Page 212
6.2.4.3 Operation of Chromic Acid Baths......Page 213
6.2.4.4 Quality of the Deposit......Page 214
6.2.5.1 General Principles......Page 215
Acid Sulfate Baths......Page 216
6.2.5.3 Alkaline Stannate Baths......Page 217
Acid Sulfate Baths......Page 218
6.3.1 Zinc Coatings (Galvanizing)......Page 219
6.3.3 Aluminum Coatings......Page 220
6.4.1.1 Mechanism of Phosphating......Page 221
6.4.1.2 Accelerated Phosphating Processes......Page 222
6.4.2 Anodizing......Page 223
6.4.2.2 Practice......Page 224
Decorative Protective Coatings......Page 226
6.4.3 Chromating......Page 227
6.4.3.1 Coatings on Aluminum......Page 228
6.5 Paint Coatings For Metals......Page 230
6.5.1.1 Binding Media......Page 231
Blends for Air-Drying Paints......Page 232
6.5.1.2 Pigments and Extenders......Page 233
Water......Page 234
6.5.2.1 Traditional Paints......Page 235
6.5.3 Paint Formulation......Page 236
Further Reading......Page 237
7.1.1 Solid Solutions in Iron......Page 238
7.1.2 The Iron-Carbon System......Page 240
7.1.3.1 Normalized Steels......Page 241
7.1.3.2 Quenched and Tempered Steels......Page 242
7.1.4 Cast Irons......Page 243
7.2.1.1 Iron(III) Oxides, Hydrous Oxides, and Derivatives......Page 245
7.2.1.2 Iron(II) Oxides, Hydroxides, and Derivatives......Page 246
7.2.2.1 Fresh Waters......Page 247
7.2.2.3 Alkaline Waters......Page 249
7.2.3.1 Rusting Due to Atmospheric Humidity......Page 250
7.2.4 Rusting of Cast Irons......Page 252
7.2.4.2 Other Irons......Page 253
7.3.2 Phase Equilibria in the Iron-Oxygen System......Page 254
7.3.3.1 Nature of Scale......Page 256
7.3.3.2 Oxidation Rates......Page 257
7.3.4 Oxidation of Steels......Page 258
7.3.4.2 Influence on Metal Quality of Scales Formed During Manufacture......Page 259
7.3.5 Oxidation and Growth of Cast Irons......Page 260
Graphitization......Page 261
Further Reading......Page 262
8 - Stainless Steels......Page 263
8.1.1 The Iron-Chromium System......Page 264
8.1.2.2 Nickel......Page 265
8.1.2.3 Nickel and Carbon Present Together......Page 266
8.1.2.4 Molybdenum......Page 267
8.1.3 Schaeffler Diagrams......Page 268
Solution:......Page 269
8.2.2.1 Ferritic steels......Page 270
8.2.2.4 Duplex Steels......Page 272
8.3.1.2 Determination......Page 273
8.3.1.3 Presentation......Page 274
Acidic Media......Page 275
Neutral Halide media......Page 276
8.3.1.5 Influence of Steel Composition and Condition......Page 278
Non-oxidizing Acids......Page 280
Phosphoric Acid......Page 281
8.3.2.2 Pitting Corrosion......Page 282
Solution:......Page 284
8.3.2.4 Sensitization and Intergranular Corrosion......Page 285
8.4 Resistance to Dry Oxidation......Page 287
8.5.2.1 Austenitic Steels Without Molybdenum......Page 289
8.5.2.3 Austenitic Steels With Manganese Substitution......Page 290
8.5.5 Oxidation Resistant Steels......Page 291
Further Reading......Page 292
Solution to Problem 1.......Page 293
(d) Beer barrels......Page 294
Solution to Problem 3.......Page 295
9.1 Summary of Physical Metallurgy of Some Standard Alloys......Page 297
Commercial Pure Aluminum Grades (AA 1100 Alloy Series)......Page 298
The Aluminum-Manganese Alloy AA 3003......Page 300
9.1.2 Heat Treatable (Aging) Alloys......Page 301
Aluminum-Copper-Magnesium Alloys (e.g., AA 2024)......Page 302
Aluminum Alloys Containing Lithium......Page 303
9.2 Corrosion Resistance......Page 304
Trihydroxides......Page 305
9.2.1.2 Soluble Species......Page 306
9.2.2.1 Passivation......Page 307
Fresh Waters......Page 308
9.2.2.3 Corrosion Resistance in Acidic and Alkaline Media......Page 309
Magnesium......Page 310
Copper......Page 311
Intercrystalline and Exfoliation Corrosion......Page 312
9.2.3.3 Stress-Corrosion Cracking......Page 313
9.2.4.1 Nature of the Air-Formed Film......Page 314
9.2.5 Geometric Effects......Page 315
9.2.5.2 Impingement, Cavitation, and Erosion-Corrosion......Page 316
Further Reading......Page 317
10 - Corrosion and Corrosion Control in Aviation......Page 318
10.1.3 Corrosion of Aluminum Alloys in Airframes......Page 319
10.1.4.1 Corrosion of Aluminum Structures......Page 320
10.1.5 Systematic Assessment for Corrosion Control......Page 321
10.1.6.1 Fatigue......Page 322
10.2.1 Engine Operation......Page 323
10.2.2 Brief Review of Nickel Superalloys......Page 325
10.2.3.2 Aluminizing for Oxidation Resistance......Page 326
10.2.3.3 Hot Corrosion and Sulfidation......Page 327
10.2.4.1 Factors Related to Engine Operation......Page 328
10.2.4.2 Flight Pattern Factors......Page 329
10.2.5.1 Turbine Blades......Page 330
10.2.5.3 Combustion Chambers......Page 331
10.2.6 Monitoring and Technical Development......Page 333
Further Reading......Page 334
11.2.1 Design Considerations......Page 335
Wheel Arches......Page 336
11.2.2 Overview of Paint-Shop Operations......Page 337
11.2.4 Phosphating......Page 338
11.2.5.2 Undercoating Color and Gloss Coats......Page 341
11.3.1 Exhaust Systems......Page 342
11.3.2 Cooling Systems......Page 343
11.3.3 Moving Parts......Page 344
11.4.1 Electrodeposited Nickel Chromium Systems......Page 345
Further Reading......Page 346
12.1.1.1 Possible Toxic Effects......Page 347
12.1.1.2 Hygiene......Page 348
12.1.2.1 Bacteria in the Environment......Page 349
Degradation of Protective Mechanisms......Page 350
12.1.2.4 Corrosion Control in Practice......Page 351
12.2.2 Modern Tinplate Cans......Page 352
12.2.2.2 Two-Piece Draw/Redraw Cans (DRD)......Page 353
12.2.3.1 Steel Grades for Three-Piece Cans and Non-Critical Parts......Page 354
12.2.4 The Manufacture of Tinplate......Page 355
12.2.5 Tin-Free Steel for Packaging......Page 359
Hot-Rolling......Page 356
Cold-Rolling......Page 357
Continuous Annealing......Page 358
12.3.1.2 Constitution......Page 360
12.3.1.1 Processing......Page 361
Recovery of Proteins from Whey......Page 362
12.3.2.1 Surfaces in Contact with the Product......Page 363
12.4.1 The Brewing Process......Page 365
12.4.2.2 Stress-Corrosion Cracking......Page 367
12.4.2.4 Cleaning and Sterilization......Page 368
12.4.3.2 Design......Page 369
Aluminum Alloys......Page 370
Austenitic Stainless Steels......Page 371
Further Reading......Page 372
13.1 Introduction......Page 373
13.2.1.1 Reinforced Concrete......Page 374
Chloride Penetration......Page 375
13.2.1.3 Protective Measures Applied to the Concrete......Page 376
Epoxy Resin Coated Steel......Page 377
13.2.1.5 Stress-Corrosion Cracking of Pre-Stressed Reinforcement......Page 378
13.2.2.2 Protection......Page 379
13.2.3.2 Rainwater Goods......Page 380
13.3.2 Aluminum Alloy Panels......Page 381
13.4.1 Self-Supporting Roofs and Siding......Page 382
13.4.2 Fully Supported Roofs and Flashings......Page 383
Copper......Page 384
13.5.4 Central-Heating Circuits......Page 385
13.6.1 Contact Corrosion......Page 386
13.6.2 Corrosion by Vapors from Wood......Page 387
Safety-Critical Damage by Stress-Corrosion Cracking......Page 388
13.7.2 Control......Page 389
Further Reading......Page 390