Convex bodies are at once simple and amazingly rich in structure. While the classical results go back many decades, during the past ten years the integral geometry of convex bodies has undergone a dramatic revitalization, brought about by the introduction of methods, results and, most importantly, new viewpoints, from probability theory, harmonic analysis and the geometry of finite-dimensional normed spaces. This collection arises from an MSRI program held in the Spring of 1996, involving researchers in classical convex geometry, geometric functional analysis, computational geometry, and related areas of harmonic analysis. It is representative of the best research in a very active field that brings together ideas from several major strands in mathematics.
Author(s): Keith M. Ball, Vitali Milman
Series: MSRI
Publisher: CUP
Year: 1998
Language: English
Pages: 250
000 contents......Page 1
000-intro......Page 3
001-aleskerint......Page 15
017-aleskerloc......Page 30
029-borell......Page 42
053-bourgain......Page 66
059-bourkalai......Page 73
065-bourzhang......Page 78
077-dar......Page 91
081-gluskin......Page 95
089-gowerspoly......Page 102
111-gowersrem......Page 124
117-kuper......Page 130
123-latala......Page 136
129-litcon......Page 142
139-litext......Page 152
149-maurey......Page 163
159-milsch......Page 172
165-milwag......Page 179
181-pajor......Page 194
189-schmuck1......Page 203
199-schmuck2......Page 212
203-schutt......Page 217
231-tsolom......Page 244