Controlled Growth of Nanomaterials

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book introduces the latest methods for the controlled growth of nanomaterial systems. The coverage includes simple and complex nanomaterial systems, ordered nanostructures and complex nanostructure arrays, and the essential conditions for the controlled growth of nanostructures with different morphologies, sizes, compositions, and microstructures. The book also discusses the dynamics of controlled growth and thermodynamic characteristics of two-dimensional nanorestricted systems. The authors introduce various novel synthesis methods for nanomaterials and nanostructures, such as hierarchical growth, heterostructures growth, doping growth and some developing template synthesis methods. In addition to discussing applications, the book reviews developing trends in nanomaterials and nanostructures.

Author(s): Lide Zhang, Xiaosheng Fang, Changhui Ye
Publisher: World Scientific Pub
Year: 2007

Language: English
Pages: 479
City: Singapore; Hackensack, NJ
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Технологии получения наноматериалов и наноструктур;

Contents......Page 6
1. Introduction......Page 12
Bibliography......Page 20
2. Controlled Growth of Nanowires and Nanobelts......Page 23
2.1 Introduction......Page 25
2.2.1. ZnO......Page 26
2.2.2. SnO2......Page 31
2.2.3. In2O3......Page 35
2.2.4. MgO......Page 38
2.2.4.1. Controlled growth of MgO nanostructures......Page 39
2.2.4.2. Direct observation of the growth process of MgO nanoflowers......Page 41
2.2.5. Al2O3......Page 44
2.3.1. ZnS......Page 49
2.3.2. CdS......Page 54
2.4.1. S-doped ZnO nanowires......Page 59
2.4.2. Ce-doped ZnO nanostructures......Page 60
2.4.3. Sn-doped ZnO nanobelts......Page 63
2.4.4. Mn-doped ZnS nanobelts......Page 65
Bibliography......Page 68
3. Design and Synthesis of One-Dimensional Heterostructures......Page 79
3.1 Introduction......Page 81
3.2.1. Coaxial core/shell structure (nanocable) and biaxial nanowires......Page 82
3.2.2. Heterojunction and superlattice nanowire structure......Page 89
3.2.3. Complex branch structure (hierarchical structure)......Page 94
3.3 Concluding remarks......Page 108
Bibliography......Page 109
4. Quasi-Zero Dimensional Nanoarrays......Page 113
4.1 Synthesis of two-dimensional colloid crystals......Page 115
4.1.1. Drop coating......Page 117
4.1.2. Spin-coating......Page 119
4.1.3. Perpendicular withdrawing......Page 120
4.2 Ordered nanoarrays based on two-dimensional colloidal crystal templates......Page 122
4.2.1.1. ZnO-ordered pore arrays based on electro-deposition and colloidal monolayers......Page 123
4.2.1.2. Au-ordered through-pore arrays based on electro-deposition and colloidal monolayers......Page 133
4.2.1.3. SnO2 mono- and multi-layered nanostructured porous films based on solution-dipping templates......Page 140
4.2.1.4. Fe2O3-ordered pore arrays based on solution-dipping templates and colloidal monolayer......Page 145
4.2.1.5. In2O3-ordered pore arrays based on solution-dipping templates and colloidal monolayers......Page 153
4.2.2. Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films......Page 156
4.2.3. Au nanoparticle arrays......Page 165
Bibliography......Page 170
5. Nanoarray Synthesis and Characterization based on Alumina Templates......Page 177
5.1 Preparation techniques of ordered channel AAM (anodization alumina membrane) templates......Page 179
5.1.1. Preparation of ordered channel AAM templates......Page 180
5.1.2. Structure and characterization of ordered channel AAM templates......Page 182
5.1.3. Exploration of ordered channel formation mechanism......Page 183
5.2 Synthesis and characterization of ordered nanoarrays......Page 186
5.2.1.1. Ordered nanoarrays of metal nanowires and nanotubes (Pb, Ag, Cu, Au)......Page 187
5.2.1.2. Ordered nanoarrays of semimetal nanowires and nanotubes......Page 204
5.2.1.3. Ordered nanoarrays of Sb nanowires and nanotubes......Page 218
5.2.1.4. Ordered nanoarrays of semiconductor nanowires and nanotubes......Page 222
5.2.1.5. Ordered nanoarrays of carbon nanotubes......Page 226
5.2.2.1. Ordered nanoarrays of alloy nanowires......Page 238
5.2.2.2. Ordered nanoarrays of oxide nanowires and nanotubes......Page 244
5.2.2.3. Ordered nanoarrays of sulphide, selenide, telluride and ionide nanowires......Page 259
5.2.3.1. Co-Ni-P alloy nanoarrays......Page 280
5.2.3.2. Ni-W-P alloy nanowire arrays......Page 283
Bibliography......Page 287
6. Controlled Growth of Carbon Nanotubes......Page 299
6.1 Introduction......Page 301
6.2 Preparation, morphologies and structures of Small diameter carbon nantubes (CNTs)......Page 303
6.2.1. Multi-walled carbon nanotubes (MWNTs)......Page 304
6.2.3. Discussion and analysis......Page 307
6.3 Very long carbon nanotubes and continuous carbon nanotube yarns (fibers)......Page 312
6.3.1. Very long carbon nanotubes......Page 313
6.3.2. Spinning continuous carbon nanotube yarns (fibers)......Page 316
6.4 Controlled synthesis of single-walled carbon nanotubes......Page 318
6.4.1. Preparation of pure single-walled carbon nanotubes......Page 319
6.4.2. Direct synthesis of a macroscale single-walled carbon nanotubes non-woven material......Page 324
6.4.3. Synthesis of random networks of single-walled carbon nanotubes......Page 328
6.5 Synthesis of double-walled carbon nanotubes (DWNTs)......Page 331
Bibliography......Page 335
7. Synthesis of Inorganic Non-carbon Nanotubes......Page 339
7.1 Introduction......Page 341
7.2 Synthesis of inorganic nanotubes......Page 342
7.2.1.2. Inorganic nanotubes based on transition metal chalcogenides and halides......Page 343
7.2.1.3. Inorganic nanotubes based on boron nitride and the derivatives......Page 351
7.2.1.4. Inorganic nanotubes based on rare earth and transition metal oxides and their derivatives......Page 352
7.2.2. Inorganic nanotubes based on quasi-two-dimensional structures......Page 354
7.2.3. Inorganic nanotubes based on three-dimensional structures......Page 362
7.2.4. Formation mechanisms of inorganic nanotubes......Page 367
Bibliography......Page 372
8. Novel Properties of Nanomaterials......Page 379
8.2.1. Introduction......Page 381
8.2.2. Optical measurement......Page 382
8.2.3.1. Cu/AAM......Page 383
8.2.3.2. Ag/AAM......Page 386
8.2.3.3. Pb/AAM......Page 387
8.2.4. Theoretical calculation......Page 388
8.2.4.1. Theory model......Page 389
8.2.4.2. Numerical simulation......Page 392
8.3 Electronic and magnetic properties of Bi-based nanowire arrays......Page 400
8.3.1. Bi nanowire arrays......Page 401
8.3.2. Bi-Bi homogeneous nanowire junction......Page 403
8.3.3. Y-segment Bi nanowire array......Page 404
8.3.4. Bi-Sb segment nanowire junction......Page 406
8.4.1. AgI nanowire arrays......Page 407
8.4.2. Bi nanowire arrays......Page 410
8.4.3. Cu nanowire arrays......Page 413
Bibliography......Page 415
9. Applications......Page 419
9.2.1. SnO2 gas sensors......Page 421
9.2.2.1. Nanodevices for electrical detection of single viruses......Page 432
9.2.2.2. Nanoelectromechanical devices for detection of viruses......Page 438
9.2.2.3. Biological magnetic sensors......Page 443
9.2.2.4. Biotin-modified Si nanowire nanosensors for detection of protein binding......Page 447
9.2.2.5. Bio-conjugated nanoparticles for rapid detection of single bacterial cell......Page 450
9.2.2.6. Near-infrared optical sensors based on single-walled carbon nanotubes......Page 452
9.2.3. Chemical sensors......Page 454
9.3 Field emission of carbon nanotubes and its application......Page 457
9.4 Light polarization......Page 460
9.6 Electronic and optoelectronic nanoscale devices......Page 465
Bibliography......Page 469
Index......Page 475