Highly regarded for its accessible writing and practical case studies, Control Systems Engineering is the most widely adopted textbook for this core course in Mechanical and Electrical engineering programs. This new sixth edition has been revised and updated with 20% new problems and greater emphasis on computer-aided design.Close the loop between your lectures and the lab!Integrated throughout the Nise text are 10 virtual experiments, which enable students to implement the design-simulate-prototype workflow of practicing engineers. Powered by LabVIEW software and simulations of Quanser’s lab plants, the virtual labs enable students to apply concepts to virtual systems, implement control solutions and evaluate their results. The virtual labs deepen the homework learning experience and prepare students to make more effective use of their time in the lab. Empower your students to take control of their learning with virtual labs accessible anywhere internet is available!Visit www.quansercontrollabs.com for additional information related to Quanser.
Author(s): Norman S. Nise
Edition: 6th
Publisher: John Wiley
Year: 2010
Language: English
Pages: 1005
Tags: Автоматизация;Теория автоматического управления (ТАУ);Книги на иностранных языках;
COVER......Page 1
TITLE PAGE......Page 7
COPYRIGHT......Page 8
CONTENTS......Page 9
PREFACE......Page 13
1. INTRODUCTION......Page 23
Control System Definition......Page 24
Advantages of Control Systems......Page 25
Speed Control......Page 26
Contemporary Applications......Page 27
1.3 System Configurations......Page 29
Open-Loop Systems......Page 30
Computer-Controlled Systems......Page 31
Transient Response......Page 32
Stability......Page 33
Case Study......Page 34
1.5 The Design Process......Page 37
Step 3: Create a Schematic......Page 38
Step 4: Develop a Mathematical Model (Block Diagram)......Page 39
Step 6: Analyze and Design......Page 40
MATLAB......Page 42
1.7 The Control Systems Engineer......Page 43
Review Questions......Page 45
Problems......Page 46
Cyber Exploration Laboratory......Page 52
Bibliography......Page 53
2. MODELING IN THE FREQUENCY DOMAIN......Page 55
2.1 Introduction......Page 56
2.2 Laplace Transform Review......Page 57
Partial-Fraction Expansion......Page 59
2.3 The Transfer Function......Page 66
2.4 Electrical Network Transfer Functions......Page 69
Simple Circuits via Mesh Analysis......Page 70
Simple Circuits via Nodal Analysis......Page 72
Complex Circuits via Mesh Analysis......Page 73
Complex Circuits via Nodal Analysis......Page 76
A Problem-Solving Technique......Page 78
Inverting Operational Amplifier......Page 80
Noninverting Operational Amplifier......Page 81
2.5 Translational Mechanical System Transfer Functions......Page 83
2.6 Rotational Mechanical System Transfer Functions......Page 91
2.7 Transfer Functions for Systems with Gears......Page 96
2.8 Electromechanical System Transfer Functions......Page 101
2.9 Electric Circuit Analogs......Page 106
Series Analog......Page 107
Parallel Analog......Page 108
2.10 Nonlinearities......Page 110
2.11 Linearization......Page 111
Case Studies......Page 116
Review Questions......Page 119
Problems......Page 120
Cyber Exploration Laboratory......Page 134
Bibliography......Page 137
3. MODELING IN THE TIME DOMAIN......Page 139
3.1 Introduction......Page 140
3.2 Some Observations......Page 141
3.3 The General State-Space Representation......Page 145
3.4 Applying the State-Space Representation......Page 146
Minimum Number of State Variables......Page 147
3.5 Converting a Transfer Function to State Space......Page 154
3.6 Converting from State Space to a Transfer Function......Page 161
3.7 Linearization......Page 163
Case Studies......Page 166
Summary......Page 170
Problems......Page 171
Cyber Exploration Laboratory......Page 179
Bibliography......Page 181
4. TIME RESPONSE......Page 183
4.2 Poles, Zeros, and System Response......Page 184
Poles and Zeros of a First-Order System: An Example......Page 185
Time Constant......Page 188
First-Order Transfer Functions via Testing......Page 189
4.4 Second-Order Systems: Introduction......Page 190
Underdamped Response, Figure 4.7 (c)......Page 192
Critically Damped Response, Figure 4.7 (e)......Page 193
Natural Frequency, ωn......Page 195
Damping Ratio, ζ......Page 196
4.6 Underdamped Second-Order Systems......Page 199
Evaluation of Tp......Page 201
Evaluation of Tr......Page 203
4.7 System Response with Additional Poles......Page 208
4.8 System Response With Zeros......Page 213
4.9 Effects of Nonlinearities Upon Time Response......Page 218
4.10 Laplace Transform Solution of State Equations......Page 221
Eigenvalues and Transfer Function Poles......Page 222
4.11 Time Domain Solution of State Equations......Page 225
Case Studies......Page 229
Summary......Page 235
Review Questions......Page 236
Problems......Page 237
Cyber Exploration Laboratory......Page 250
Bibliography......Page 254
5. REDUCTION OF MULTIPLE SUBSYSTEMS......Page 257
5.2 Block Diagrams......Page 258
Cascade Form......Page 259
Parallel Form......Page 261
Feedback Form......Page 262
Moving Blocks to Create Familiar Forms......Page 263
5.3 Analysis and Design of Feedback Systems......Page 267
5.4 Signal-Flow Graphs......Page 270
Definitions......Page 273
Mason’s Rule......Page 274
5.6 Signal-Flow Graphs of State Equations......Page 276
5.7 Alternative Representations in State Space......Page 278
Cascade Form......Page 279
Parallel Form......Page 281
Controller Canonical Form......Page 282
Observer Canonical Form......Page 284
5.8 Similarity Transformations......Page 288
Definitions......Page 290
Case Studies......Page 294
Summary......Page 300
Review Questions......Page 301
Problems......Page 302
Cyber Exploration Laboratory......Page 319
Bibliography......Page 321
6. STABILITY......Page 323
6.1 Introduction......Page 324
6.2 Routh-Hurwitz Criterion......Page 327
Generating a Basic Routh Table......Page 328
Interpreting the Basic Routh Table......Page 329
Zero Only in the First Column......Page 330
Entire Row is Zero......Page 332
6.4 Routh-Hurwitz Criterion: Additional Examples......Page 336
6.5 Stability in State Space......Page 342
Case Studies......Page 345
Review Questions......Page 347
Problems......Page 348
Cyber Exploration Laboratory......Page 357
Bibliography......Page 358
7. STEADY-STATE ERRORS......Page 361
Definition and Test Inputs......Page 362
Evaluating Steady-State Errors......Page 363
7.2 Steady-State Error for Unity Feedback Systems......Page 365
Steady-State Error in Terms of T(s)......Page 366
Steady-State Error in Terms of G(s)......Page 367
7.3 Static Error Constants and System Type......Page 371
System Type......Page 374
7.4 Steady-State Error Specifications......Page 375
7.5 Steady-State Error for Disturbances......Page 378
7.6 Steady-State Error for Nonunity Feedback Systems
......Page 380
7.7 Sensitivity......Page 384
Analysis via Final Value Theorem......Page 386
Analysis via Input Substitution......Page 388
Case Studies......Page 390
Summary......Page 393
Review Questions......Page 394
Problems......Page 395
Cyber Exploration Laboratory......Page 406
Bibliography......Page 408
8. ROOT LOCUS TECHNIQUES......Page 409
The Control System Problem......Page 410
Vector Representation of Complex Numbers......Page 411
8.2 Defining the Root Locus......Page 414
8.3 Properties of the Root Locus......Page 416
8.4 Sketching the Root Locus......Page 419
8.5 Refining the Sketch......Page 424
The jω-Axis Crossings......Page 427
Angles of Departure and Arrival......Page 429
Plotting and Calibrating the Root Locus......Page 432
Basic Rules for Sketching the Root Locus......Page 433
Additional Rules for Refining the Sketch......Page 434
8.7 Transient Response Design via Gain Adjustment......Page 437
8.8 Generalized Root Locus......Page 441
8.9 Root Locus for Positive-Feedback Systems......Page 443
8.10 Pole Sensitivity......Page 446
Case Studies......Page 448
Summary......Page 453
Problems......Page 454
Cyber Exploration Laboratory......Page 472
Bibliography......Page 474
9. DESIGN VIA ROOT LOCUS......Page 477
Improving Transient Response......Page 478
Improving Steady-State Error......Page 479
Compensators......Page 480
Ideal Integral Compensation (PI)......Page 481
Lag Compensation......Page 486
9.3 Improving Transient Response via Cascade Compensation......Page 491
Ideal Derivative Compensation (PD)......Page 492
Lead Compensation......Page 499
PID Controller Design......Page 504
Lag-Lead Compensator Design......Page 509
Notch Filter......Page 514
9.5 Feedback Compensation......Page 517
Approach 1......Page 518
Approach 2......Page 522
9.6 Physical Realization of Compensation......Page 525
Active-Circuit Realization......Page 526
Passive-Circuit Realization......Page 528
Case Studies......Page 530
Summary......Page 535
Review Questions......Page 536
Problems......Page 537
Cyber Exploration Laboratory......Page 552
Bibliography......Page 553
10. FREQUENCY RESPONSE TECHNIQUES......Page 555
10.1 Introduction......Page 556
The Concept of Frequency Response......Page 557
Analytical Expressions for Frequency Response......Page 558
Plotting Frequency Response......Page 559
10.2 Asymptotic Approximations: Bode Plots......Page 562
Bode Plots for G(s) = (s + a)......Page 563
Bode Plots for G(s) =1/(s+a)......Page 566
Bode Plots for G(s)=1/s......Page 567
Bode Plots for G(s)= s² + 2ζωnS + ωn²......Page 571
Corrections to Second-Order Bode Plots......Page 572
Bode Plots for G(s) = 1/(s²+ + 2ζωnS + ωn²)......Page 574
Bode Plots for Ratio of First- and Second-Order Factors......Page 578
10.3 Introduction to the Nyquist Criterion......Page 581
Derivation of the Nyquist Criterion......Page 582
Applying the Nyquist Criterion to Determine Stability......Page 585
10.4 Sketching the Nyquist Diagram......Page 586
10.5 Stability via the Nyquist Diagram......Page 591
Stability via Mapping Only the Positive jω-Axis......Page 593
10.6 Gain Margin and Phase Margin via the Nyquist Diagram......Page 596
Determining Stability......Page 598
Evaluating Gain and Phase Margins......Page 600
Damping Ratio and Closed-Loop Frequency Response......Page 602
Response Speed and Closed-Loop Frequency Response......Page 603
Constant M Circles and Constant N Circles......Page 605
Nichols Charts......Page 609
Damping Ratio from Phase Margin......Page 611
Response Speed from Open-Loop Frequency Response......Page 613
Position Constant......Page 615
Velocity Constant......Page 616
Acceleration Constant......Page 617
Modeling Time Delay......Page 619
10.13 Obtaining Transfer Functions Experimentally......Page 624
Case Study......Page 628
Summary......Page 629
Review Questions......Page 631
Problems......Page 632
Cyber Exploration Laboratory......Page 643
Bibliography......Page 645
11. DESIGN VIA FREQUENCY RESPONSE......Page 647
11.1 Introduction......Page 648
Design Procedure......Page 649
Visualizing Lag Compensation......Page 652
Design Procedure......Page 653
Visualizing Lead Compensation......Page 657
Lead Compensator Frequency Response......Page 658
Design Procedure......Page 659
11.5 Lag-Lead Compensation......Page 663
Design Procedure......Page 665
Case Studies......Page 672
Summary......Page 674
Problems......Page 675
Cyber Exploration Laboratory......Page 682
Bibliography......Page 683
12. DESIGN VIA STATE SPACE......Page 685
12.1 Introduction......Page 686
12.2 Controller Design......Page 687
Topology for Pole Placement......Page 688
Pole Placement for Plants in Phase-Variable Form......Page 690
12.3 Controllability......Page 694
Controllability by Inspection......Page 695
The Controllability Matrix......Page 696
12.4 Alternative Approaches to Controller Design......Page 698
12.5 Observer Design......Page 704
12.6 Observability......Page 711
Observability by Inspection......Page 712
The Observability Matrix......Page 713
12.7 Alternative Approaches to Observer Design......Page 715
12.8 Steady-State Error Design Via Integral Control......Page 722
Case Study......Page 726
Summary......Page 731
Review Questions......Page 732
Problems......Page 733
Cyber Exploration Laboratory......Page 741
Bibliography......Page 743
13. DIGITAL CONTROL SYSTEMS......Page 745
13.1 Introduction......Page 746
Advantages of Digital Computers......Page 747
Analog-to-Digital Conversion......Page 748
13.2 Modeling the Digital Computer......Page 749
Modeling the Sampler......Page 750
Modeling the Zero-Order Hold......Page 751
13.3 The z-Transform......Page 752
The Inverse z-Transform......Page 755
13.4 Transfer Functions......Page 757
Derivation of the Pulse Transfer Function......Page 758
13.5 Block Diagram Reduction......Page 761
Digital System Stability via the z-Plane......Page 764
Bilinear Transformations......Page 768
Digital System Stability via the s-Plane......Page 769
13.7 Steady-State Errors......Page 771
Unit Step Input......Page 772
Summary of Steady-State Errors......Page 773
13.8 Transient Response on the z-Plane......Page 775
13.9 Gain Design on the z-Plane......Page 777
13.10 Cascade Compensation via the s-Plane......Page 780
Cascade Compensation......Page 781
13.11 Implementing the Digital Compensator......Page 784
Case Studies......Page 787
Summary......Page 791
Review Questions......Page 792
Problems......Page 793
Cyber Exploration Laboratory......Page 800
Bibliography......Page 802
Appendix A: List of Symbols......Page 805
B.1 Introduction......Page 809
B.2 MATLAB Examples......Page 810
B.3 Command Summary......Page 855
Bibliography......Page 858
C.2 Using Simulink......Page 859
C.3 Examples......Page 864
Summary......Page 878
Bibliography......Page 879
D.1 Introduction......Page 881
D.2 Control Systems Analysis, Design, and Simulation......Page 882
D.3 Using LabVIEW......Page 883
D.4 Analysis and Design Examples......Page 886
D.5 Simulation Examples......Page 900
Summary......Page 909
Bibliography......Page 910
Glossary......Page 911
Answers to Selected Problems......Page 921
Credits......Page 927
Index......Page 931
Key Equations......Page 952
Solutions to Skill-Assessment Exercises......Page 953