The type of control system used for electrical machines depends on the use (nature of the load, operating states, etc.) to which the machine will be put. The precise type of use determines the control laws which apply. Mechanics are also very important because they affect performance. Another factor of essential importance in industrial applications is operating safety. Finally, the problem of how to control a number of different machines, whose interactions and outputs must be coordinated, is addressed and solutions are presented. These and other issues are addressed here by a range of expert contributors, each of whom are specialists in their particular field. This book is primarily aimed at those involved in complex systems design, but engineers in a range of related fields such as electrical engineering, instrumentation and control, and industrial engineering, will also find this a useful source of information.
Author(s): Rene Husson
Edition: 1
Publisher: Wiley-ISTE
Year: 2009
Language: English
Pages: 390
Control Methods for Electrical Machines......Page 5
Table of Contents......Page 7
Preface......Page 13
1.1.1. General structures of the machines......Page 17
1.1.2. Mechanisms and movement......Page 20
1.1.3. Engine-machine......Page 22
1.1.4. Particular movements......Page 28
1.1.5. Friction – elements of tribology......Page 32
1.2. Bibliography......Page 44
2.1.1. Kinematics of a rigid body......Page 47
2.1.2. Kinetic elements for a rigid body – Koenig’s theorems......Page 52
2.1.3. Newtonian dynamics......Page 54
2.2. Application example: dynamic balance of a rigid rotor......Page 58
2.3. Analytical dynamics (Euler-Lagrange)......Page 62
2.4.1. Equilibrium configuration without group motion......Page 65
2.4.2. Equilibrium configuration with group motion......Page 66
2.5. Vibratory behavior of a discrete non-damped system around an equilibrium configuration......Page 67
2.6.2. Setting up the model......Page 69
2.6.3. Direct resolution of the eigenvalue problem......Page 74
2.6.4. Cancellation of the stiff mode and reduction of the problem......Page 75
2.7. Bibliography......Page 77
3.1. Presentation of the mechanical drive modeling problem......Page 79
3.2.1. Conservation laws......Page 88
3.2.2. Principle of virtual powers (PVP)......Page 91
3.2.3. Thermomechanics of continuous mediums......Page 92
3.2.4. Notions on strain......Page 95
3.2.5. Some material behaviors: elementary analog models......Page 97
3.2.6. Variational formulations in mechanics of the structures......Page 98
3.3. Bibliography......Page 105
4.2.1. Overview......Page 107
4.2.2. Various structures......Page 110
4.2.3. Selection criteria for the adjustments......Page 111
4.2.4. Control mode......Page 113
4.3.1. Adjustment by trial and error......Page 116
4.3.2. Ziegler-Nichols method......Page 118
4.3.3. Cohen-Coon method......Page 119
4.4.1. Presentation of the Bode method......Page 120
4.4.2. Presentation of the Phillips and Harbor method......Page 122
4.5.2. The structure of the control law......Page 123
4.5.3. Reconstruction of the state......Page 124
4.5.4. The controller as a combination of state feedback and an observer......Page 126
4.5.5. Design of feedback gain matrix F......Page 131
4.6.1. Optimal regulator at continuous time......Page 133
4.6.2. Stochastic optimal regulator at continuous time......Page 137
4.6.3. Discrete time optimal regulator......Page 138
4.6.5. LQG/H2 control......Page 141
4.7. Choice of a control......Page 145
4.8. Bibliography......Page 146
5.1. Introduction.......Page 147
5.2.1. Introduction......Page 148
5.2.2. Passage of the structure of regulation to that of control by internal model......Page 149
5.2.3. Properties of the control by internal model......Page 150
5.2.4. Implementation......Page 155
5.3.1. Introduction......Page 157
5.3.2. General principles of predictive control......Page 160
5.4.2. Structure of the control law......Page 165
5.5. Bang-bang control......Page 168
5.6.1. Introduction......Page 170
5.6.2. Structure of the controlled loop......Page 171
5.6.3. Representation of fuzzy controllers......Page 172
5.6.4. Basic concepts of fuzzy logic......Page 173
5.6.5. Fuzzification......Page 177
5.6.6. The inference mechanism......Page 178
5.6.7. Defuzzification......Page 179
5.7.2. Formal neurons......Page 180
5.7.3. Neural networks......Page 181
5.7.5. Implementation of neural networks......Page 182
5.8. Bibliography......Page 183
6.1. Introduction......Page 185
6.2. Illustrative example......Page 186
6.3.1. General features of non-linear systems......Page 188
6.3.2. Existence of a sliding mode......Page 190
6.3.3. Chattering phenomena......Page 194
6.3.4. Determination of sliding dynamics......Page 196
6.3.5. Case of more than one commutation surface......Page 199
6.4.1. Affine systems with regard to control......Page 200
6.4.2. Linear systems......Page 203
6.5.1. Invariance condition......Page 205
6.5.2. Existence conditions......Page 206
6.5.3. Sliding mode for a perturbed system......Page 210
6.5.4. Canonical forms......Page 212
6.6.1. A classic surface dynamic......Page 214
6.6.2. A particular case: dynamic with pure discontinuities......Page 215
6.7.1. Introduction......Page 216
6.7.2. A specific linear surface choice......Page 218
6.9. Notations......Page 219
6.10. Bibliography......Page 220
7.1. Introduction......Page 223
7.2.2. Least-squares algorithm in output-error......Page 226
7.2.3. Principle of the output-error method in the general case......Page 228
7.2.4. Sensitivity functions......Page 230
7.2.5. Convergence of the estimator......Page 231
7.2.7. Implementation......Page 232
7.3.1. Introduction......Page 234
7.3.2. Bayesian approach......Page 235
7.3.3. Minimization of the compound criterion......Page 236
7.3.4. Deterministic interpretation......Page 238
7.3.5. Implementation......Page 240
7.4.1. Introduction......Page 241
7.4.2. Modeling in the three-phase frame......Page 242
7.4.3. Park’s transformation......Page 243
7.4.4. Continuous-time state-space model......Page 244
7.4.5. Output-error identification......Page 245
7.4.6. Output-error identification and a priori information......Page 247
7.5.1. Introduction......Page 248
7.5.2. Principle of the method......Page 250
7.5.3. Simulations......Page 252
7.5.4. Numerical simulations......Page 254
7.7. Bibliography......Page 257
8.1. Introduction......Page 261
8.2. Induction motor model for fault detection......Page 262
8.2.1. Stator faults modeling in the induction motor......Page 263
8.2.2. Rotor fault modeling......Page 271
8.2.3. Global stator and rotor fault model......Page 275
8.3. Diagnosis procedure......Page 277
8.3.1. Parameter estimation......Page 278
8.3.2. Implementation......Page 281
8.4. Conclusion......Page 283
8.5. Bibliography......Page 284
9.1. Introduction......Page 287
9.2.1. Functional structure......Page 288
9.3.1. Various model types......Page 293
9.3.2. Geometric models......Page 294
9.3.3. Kinematic models......Page 296
9.3.4. Dynamic models......Page 299
9.4.1. Why coordinate movements?......Page 302
9.4.2. Step response of a controlled shaft......Page 303
9.4.3. Speed representation in a point-to-point movement......Page 308
9.4.4. Partially specified trajectories......Page 316
9.6. Bibliography......Page 320
10.1. Radiotherapy......Page 323
10.1.2. Linear accelerators......Page 324
10.2. Multileaf collimators......Page 326
10.2.1. Geometric characteristics of multileaf collimators......Page 327
10.2.2. Technical characteristics......Page 328
10.2.3. Readout systems for leaf position checking......Page 329
10.2.4. Leaf command system......Page 330
10.2.5. Accuracy of command and leaf positioning......Page 332
10.3. Intensity modulated radiotherapy......Page 333
10.3.1. How to realize a modulated intensity beam with a multileaf collimator......Page 334
10.3.2. Discretization into static elementary beams......Page 335
10.3.3. Discretization into dynamic beams......Page 341
10.4. Conclusion......Page 344
10.5. Bibliography......Page 345
11.1.1. Historical overview......Page 347
11.1.3. Modular architecture example......Page 348
11.2.1. Cascaded structure......Page 350
11.2.2. Polynomial structure of controllers......Page 352
11.2.3. Conclusion......Page 354
11.3.2. Cascaded velocity-position predictive control of synchronous motors......Page 355
11.3.3. Multivariable flux-position predictive control of asynchronous motors......Page 364
11.4. Conclusions......Page 378
11.5. Bibliography......Page 380
List of Authors......Page 383
Index......Page 385