This book contains articles on the latest research in QCD from some of the leading experts in the field. These are based on talks presented at the Continuous Advances in QCD 2004 workshop held at the William I Fine Theoretical Physics Institute. The book will be a useful reference source for graduate students and researchers in high energy physics.
Author(s): T. Gherghetta
Year: 2004
Language: English
Pages: 600
CONTENTS......Page 8
FOREWORD......Page 6
1. Perturbative and Nonperturbative QCD......Page 14
1. Introduction......Page 16
2. Form factors, usual and nonforward parton densities......Page 17
3. Wide-angle Compton scattering......Page 18
4. Distribution amplitudes and pion form factors......Page 20
5 . Hard electroproduction processes and generalized parton distributions......Page 21
6. Double distributions......Page 24
7. Conclusions......Page 25
References......Page 27
1. Introduction......Page 28
2. The Dirac Spectrum in QCD......Page 30
2.1. Ergodic Domain of QCD......Page 32
2.2. Toda Lattice Equation......Page 34
3. Dirac Spectrum at Nonzero Chemical Potential......Page 36
3.2. Toda Lattice Equation......Page 37
3.3. The Bosonic Partition Function......Page 38
4. Conclusions......Page 39
References......Page 41
1. Introduction: The Conformal Correspondence Principle......Page 43
2. Effective Charges......Page 44
4. The Infrared Behavior of Effective QCD Couplings......Page 46
5. Light-Front Quantization......Page 50
6. AFS/CFT Correspondence and Hadronic Light-Front Wavefunctions......Page 52
References......Page 54
1. Introduction......Page 57
2. The variational Ansatz......Page 58
3. Deconfinement phase transition......Page 59
4. Conclusions......Page 65
References......Page 66
1. Introduction......Page 67
2. Amplitude Relations......Page 69
3. Phenomenology......Page 71
5 . Pentaquarks......Page 72
6. 1/Nc Corrections......Page 73
7. Conclusions......Page 74
Acknowledgments......Page 75
References......Page 76
1. Introduction......Page 77
2. Unintegrated Parton Densities......Page 78
3. Physics of the Wilson Line Phase Factor......Page 80
4.1. Finiteness conditions......Page 81
4.2. Connection with GPDs......Page 83
5 . Summary......Page 85
References......Page 86
2. Heavy Quark Physics......Page 88
1. Introduction......Page 90
2. QCD factorization theorem......Page 92
3. Calculation of the shape-function integral......Page 95
Ratios insensitive to low-scale physics:......Page 97
Ratios sensitive to low-scale physics:......Page 98
5. Numerical results......Page 99
6. Conclusions and outlook......Page 101
Acknowledgments:......Page 102
References......Page 103
1. Introduction......Page 104
2.1. Next-to-next-to-leading order: a23......Page 105
2.2. Next-to-next-to-next-to-leading order: a33......Page 107
4. Summary......Page 111
References......Page 112
Heavy Quark Expansion in Beauty: Recent Successes and Problems N. Uraltsev......Page 113
1. Inclusive semileptonic decays: theory vs. data......Page 114
1.1. Comments on the literature......Page 117
2. A ‘BPS’ expansion......Page 122
3. The ‘12 > 32’ problem......Page 124
References......Page 126
1. Introduction......Page 128
2. Polarization in B VV decays......Page 130
2.1. Numerical results for polarization......Page 133
3. A test for right-handed currents......Page 136
4. Distinguishing four-quark and dipole operator effects......Page 137
5. Conclusion......Page 138
Acknowledgments:......Page 139
References......Page 140
1. Introduction......Page 142
2. Formalism......Page 143
3. Subleading corrections to spectator effects......Page 146
4. Conclusions......Page 150
References......Page 151
1. Introduction......Page 152
2. Heavy-quark effective theory and the QDF......Page 155
3. IR renormalon ambiguity in the pole mass......Page 156
4. Large-x factorization in B decay......Page 157
5. Cancellation of renormalon ambiguities in the exponent......Page 159
6. Prospects for precision phenomenology......Page 160
References......Page 161
1. Introduction......Page 163
2. The Proper Effective Theory......Page 165
3. The Effective Theory Action......Page 167
4. The Computations......Page 168
5. The Top Pair Total Cross Section at Threshold......Page 170
References......Page 171
1. Introduction and Definitions......Page 173
2. Results......Page 177
3. Summary & Conclusions......Page 181
References......Page 182
1. Introduction......Page 183
2. Hadronic Modes......Page 185
3. Radiative Modes......Page 187
4. Comparison with other approaches......Page 189
5 . Conclusions and perspectives......Page 190
References......Page 191
1. Introduction......Page 193
2. Pair-production of WIMPs in B decays......Page 195
3. Abundance calculation and Comparison with Experiment......Page 198
4. Conclusions......Page 200
References......Page 201
3. Exotic Hadrons......Page 202
1. Introduction......Page 204
2.1. Insight from scattering theory......Page 207
2.2. Large Nc and chiml soliton models......Page 208
2.3. Quark models......Page 210
2.3.1. Generic features of a n uncorrelated quark model......Page 211
2.4. Early lattice results......Page 212
3. Diquarks......Page 213
3.1. Characterizing diquarks......Page 214
4.1. An overview......Page 216
4.2. Pentaquarks from diquarks I: The general idea......Page 218
4.3. Pentaquarks from diquarks II: A more detailed look at the positive parity octet and antidecuplet......Page 220
4.4. Pentaquark from diquarks III: Charm and bottom analogues......Page 222
5 . Conclusions......Page 224
References......Page 225
1. The necessity of quantum field theory......Page 228
2. The chiral quark - soliton model......Page 230
3. Baryon excitations......Page 233
4. Quark wave functions......Page 235
References......Page 239
1. Introduction......Page 240
2. The rigid rotator vs. the bound state approach......Page 242
3. Baryons with S=+1?......Page 247
Acknowledgments......Page 249
References......Page 250
1. Introduction......Page 252
2. Exotic Baryons in Large Nc......Page 256
2.2. Pentaquark Axial Couplings and Decay Widths......Page 259
2.3. Heavy qqqqQ Pentaquarks......Page 261
References......Page 262
Large Nc, QCD and Models of Exotic Baryons T.D. Cohen......Page 264
References......Page 270
4. QCD Matter at High Temperature and Density......Page 272
1. Introduction......Page 274
2. Network of rate equations......Page 275
3. The Rates......Page 277
4. Comparison to data......Page 279
5. Conclusions and Tasks......Page 284
References......Page 285
1. Introduction......Page 286
2. Thermalization and Flow......Page 288
3. Jet Quenching and RHIC Puzzles......Page 289
4. Hadronization by Quark Recombination......Page 290
5. A New Quark Counting Rule for Elliptic Flow......Page 292
6. Summary......Page 293
References......Page 294
1. Introduction......Page 296
2.2. Semi-classical QCD and hadron multiplicities......Page 297
2.3. High pT hadron suppression at forward rapidities, and quantum evolution in the Color Glass Condensate......Page 298
3. Approach to thermalization, and the r6le of classical fields......Page 300
4. Hydrodynamical evolution: more fluid than water......Page 301
5. High pT hadron suppression, jet quenching, and heavy quarks......Page 302
6. Summary......Page 303
References......Page 304
1. Introduction......Page 306
2.1. Gluon PFooduction Cross Section......Page 307
2.2. Cronin Effect......Page 309
3.2. High-pT Suppression in p A Collisions......Page 311
3.2.2. Extended Geometric Scaling Region......Page 312
4. Comparison with Data......Page 313
References......Page 314
1. Introduction......Page 316
2. Confinement and Chiral Symmetry......Page 317
4. Pure Glue......Page 319
5.1. Fundamental Representation......Page 321
5.2. Adjoint Representation......Page 322
7. Concluding Thoughts......Page 323
References......Page 324
1. Introduction......Page 326
2. Model......Page 327
3. Charge neutrality condition......Page 329
4. Gapless superconductivity......Page 331
5 . Summary......Page 333
References......Page 335
1. Introduction......Page 336
2. LOFF phase......Page 337
3.1. Gap equation in the Ginaburg-Landau approximation......Page 339
3.2. Effective gap equation......Page 341
4. Astrophysical implications......Page 343
Acknowledgments......Page 346
References......Page 347
1. Introduction......Page 348
2. Dynamics with abnormal number of Nambu-Goldstone bosons......Page 349
3. Gauged a-model......Page 351
4. Model with global U(l)y symmetry......Page 353
5. Model with gauged U(1)Y symmetry......Page 356
Acknowledgments......Page 357
References......Page 358
1. Set-Up......Page 359
2. Results......Page 364
References......Page 368
1. Introduction......Page 370
2. Gapless state and its stability......Page 371
3. Breached paired superfluid state for a finite-range interaction......Page 375
References......Page 378
5. Topological Field Configurations......Page 380
1. Introduction......Page 382
2. Ordinary instantons at T = 0......Page 387
3. Quantum weight of the periodic instanton with trivial holonomy......Page 388
4. Quantum weight of the caloron with non-trivial holonomy......Page 389
6. Caloron free energy and instability of the trivial holonomy......Page 391
7. Summary......Page 392
References......Page 393
2. Connection between Moyal product in configuration space and operator product in Fock space......Page 394
3. Noncommutative field theories......Page 396
4. Noncommutative solitons......Page 398
5. Noncommutative vortices......Page 399
6. Instantons......Page 401
References......Page 404
1. Introduction......Page 406
2.1. The sine-Gordon Theory in 1+1 Dimensions......Page 407
2.2. The (p4 Theory in 1 + 1 Dimensions......Page 408
2.3. Discrete Breathers......Page 409
3.1. 1+1 Dimensions......Page 411
4. Conclusions and Discussion......Page 414
References......Page 415
2. Confinement in SU(N) YM Theory......Page 416
3. “Semiclassical” Nonabelian Monopoles......Page 418
4. Some Examples......Page 419
6 . Monopoles are multiplets of H......Page 420
7. Why Nonabelian Monopoles are Intrinsically Quantum Mechanical......Page 421
8. Phases of Softly Broken N = 2 Gauge Theories......Page 422
10. Nonabelian Vortices......Page 423
11. Nonabelian Bogomolnyi Equations......Page 424
Remarks:......Page 425
References......Page 427
1. Introduction......Page 429
2.1. QED......Page 430
2.2. Electric flux in gluodynarnics......Page 431
3. Some basic facts in quarkless Yang-Mills......Page 432
3.2. Spatial tension......Page 433
3.3. Dependence of the tension on the representation, and N-allity......Page 434
4. Predictions for the Wilson loops......Page 436
6. Conclusions......Page 438
References......Page 440
1. Introduction and Summary......Page 441
2. Supersymmetry enhancement and worldvolume moduli......Page 443
3. Domain Wall Moduli in N=1 SQCD......Page 445
4.1. Junction tension for N f = 1......Page 449
4.2. Wall intersections as worldvolume CP1 kinks......Page 450
References......Page 452
1. Introduction......Page 453
2. Properties of caloron solutions......Page 455
2.1. Fermion zero-modes......Page 456
3. The construction - in brief......Page 458
3.1. From ADHM to Nahm......Page 459
3.2. From Green's function to solution......Page 460
References......Page 463
6. Supersymmetry and Theoretical Methods......Page 466
1. Introduction......Page 468
3. Viscosity from dual gravity description......Page 469
4. A viscosity bound......Page 471
5 . Checks of the viscosity bound......Page 472
6. Conclusion......Page 473
Appendix A.......Page 474
References......Page 476
1. Introduction......Page 477
2. Effective actions for coherent states......Page 483
References......Page 488
1. Genesis of the idea......Page 491
2. Orientifold field theory and N= 1 gluodynamics......Page 492
2.1. Perturbative equivalence......Page 493
2.2. Non-perturbative equivalence proof......Page 495
3.1. General features (Nf > 1 fixed, N large)......Page 497
3.2. Qualitative results for one-flavor QCD from the orientifold expansion......Page 498
4. Calculating the quark condensate in one-flavor QCD from supersymmetric gluodynamics......Page 500
References......Page 503
1. Introduction......Page 505
1.1. Amplitudes in the spinor helicity formalism......Page 506
2. Gluonic NMHV amplitudes and the CSW method......Page 508
3. The Analytic Supervertex......Page 509
4.1. Antianalytic N = 1 amplitude......Page 512
4.2. Antianalytic N = 2 amplitude......Page 514
Acknowledgements.......Page 515
References......Page 516
1. Introduction......Page 517
2. Weak supersymmetric oscillator......Page 519
3. A class of interactive weak supersymmetric systems......Page 522
4. Discussion......Page 525
References......Page 526
1. Introduction......Page 528
2. Yukawa theory......Page 529
3. Feynman-gauge QED......Page 534
4. A correlator in n / = ( 2 , 2 ) SYM theory......Page 535
5. N=(1,1) SYM theory at finite temperature......Page 536
References......Page 538
2. Fermionic and gauge fields in d = 2 noncommutative space......Page 540
3. Perturbative effective action......Page 542
4. The fermion determinant in the U(1) case......Page 543
5. The bosonization rules......Page 546
6. Mapping of the Wess-Zumino-Witten actions......Page 547
References......Page 549
1. Introduction......Page 550
2. A nonabelian vacuum in SU(3) Nf = 4 theory......Page 551
3. A nonabelian vacuum in USp(4) N f = 4 theory......Page 555
4. Superconformal Vacuum as Limit of Colliding Vacua......Page 557
5 . Conclusions......Page 558
References......Page 559
1. Introduction......Page 560
2. Reviewing SYM effective Lagrangian......Page 561
3. Effective Lagrangians in orientifold theories......Page 562
3.1. Effective Lagrangians in the orientifold theories at finite N......Page 563
3.2. Lifting the spectrum degeneracy at finite N and gluino mass m......Page 566
4. Conclusions......Page 567
Acknowledgments......Page 568
References......Page 569
1. Basic Strategy......Page 570
2. Brief review of one loop results......Page 571
3. Two-Loop Heisenberg-Euler effective Lagrangian......Page 572
3.1. Self-dual magic at two-loop......Page 573
3.1.2. Similarity of spinor and scalar results in self-dual background......Page 574
3.1.3. Significance of 5 and I'......Page 575
4. Background field loopology......Page 576
References......Page 580
1. Introduction......Page 582
2. Derivation......Page 583
2.1. The Optical Approximation for the propagator......Page 584
2.2. The Optical Casimir energy......Page 586
3. Parallel Plates......Page 587
4. Sphere and Plane......Page 589
5 . Conclusions......Page 590
References......Page 591
1.1. Renomalizable theories as effective theories......Page 592
1.2. Possible fundamental theories......Page 593
1.3. Gravity as a theoqt of the background......Page 594
1.4. Is the gravity findarnental?......Page 596
2.2. Perturbative string theory......Page 597
2.2.2. Divergences in the perturbative definition......Page 598
2.2.3. Amplitudes or correlators......Page 599
2.3. Modified Zwiebach String Field Theory......Page 600
References......Page 601