Condensed Matter Theories: Proceedings of the 31st International Workshop

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The Thirty-First International Workshop on Condensed Matter Theories (CMT31) held in Bangkok focused on the many roles played by ab initio theory, modeling, and high-performance computing in condensed matter and materials science, providing a forum for the discussion of recent advances and exploration of new problems. Fifty-six invited papers were presented, of which 38 appear as chapters in this volume. Reports of recent results generated lively debate on two-dimensional electron systems, the metal-insulator transition, dilute magnetic semiconductors, effects of disorder, magnetoresistence phenomena, ferromagnetic stripes, quantum Hall systems, strongly correlated Fermi systems, superconductivity, dilute fermionic and bosonic gases, nanostructured materials, plasma instabilities, quantum fluid mixtures, and helium in reduced geometries.

Author(s): Virulh Sa-Yakanit
Publisher: World Scientific Publishing Company
Year: 2009

Language: English
Commentary: 1680
Pages: 499

CONTENTS......Page 18
Main Session......Page 22
1. Career History......Page 24
2. Benchmarks of Innovation in Many-Body Theory......Page 25
3. A Life of Service and Dedication......Page 27
References......Page 28
2. Correlated Dynamics......Page 29
Acknowledgments......Page 34
References......Page 35
1. Introduction......Page 36
2.1. Diffusion method......Page 37
2.2. Non-local potentials......Page 39
3.1. The Fock-Darwin model......Page 40
4. Magnetic Susceptibility and NMR Shifts......Page 42
4.1. Test calculations......Page 43
4.2. Sample molecules......Page 45
Acknowledgments......Page 46
References......Page 47
1. Introduction......Page 48
2. Screening of Particle Exchange......Page 50
3. From Boltzmann to Quantum Statistics......Page 53
4. Off-Diagonal Elements and Kinetic Energy......Page 57
5. Summary......Page 58
References......Page 59
1. Introduction......Page 60
2.1. Elementary excitation modes......Page 62
2.2. Impulse approximation......Page 63
3. Self-Energy from Equations of Motion......Page 65
4. Results for the Kinetic Energy and Condensate Fraction......Page 67
References......Page 69
1. Introduction......Page 71
2. Classical Fluids in Nanopores......Page 72
3. Calculations and Results......Page 74
Acknowledgments......Page 77
References......Page 78
Condensed Matter......Page 80
1. Introduction......Page 82
2. Equation of Motion for Density Fluctuation......Page 83
3. Frequency Spectrum......Page 86
4. Solution......Page 88
References......Page 89
1. Introduction......Page 91
2. Model......Page 92
3. Ground State Analysis......Page 94
4. Numerical Calculations......Page 96
Acknowledgments......Page 98
References......Page 99
Intriguing Role of Hole-Cooper-Pairs in Superconductors and Superuids M. Grether, M. de Llano, S. Ram rez and O. Rojo......Page 100
2.1. In high-energy physics......Page 101
2.2. In relativistic BEC......Page 102
3. Hole-Cooper-Pairs in a Generalized BEC Theory......Page 103
4. Cold-atom BECs, Bosonic and Fermionic......Page 107
Acknowledgments......Page 108
Appendix A. Stability of both 2e- and 2h-CP pure GBEC phases......Page 109
References......Page 110
1. Introduction......Page 112
2. The Boson-Fermion Model......Page 114
3. Discussion......Page 116
References......Page 117
1. Introduction......Page 119
2. Basic Equations......Page 122
3. Discussion......Page 126
4. Conclusion......Page 127
Appendix B. Subsystem Response to External Field and Green Functions......Page 128
Appendix C. Charged-Boson Currents and Conductivity......Page 129
References......Page 130
1. Introduction......Page 131
2. The Model Lagrangian......Page 132
3. The Effective One-Body Propagator......Page 134
3.1. Ground state energy......Page 136
3.1.1. White noise limit......Page 137
References......Page 138
Implications of Relativistic Con gurations and Band Structures in the Physics of Bio-Molecules and Solids M. Fhokrul Islam, H. G. Bohr and F. B. Malik......Page 140
2. Relativistic and Non-Relativistic Electronic Con gurations of First Transition Metals, Doubly Ionized Ions and in Rare Earth......Page 141
3. Effective Charge and Shielding Constant in Relativistic Case......Page 143
4. Electrostatic Interaction between Ligands......Page 144
5. Anomalous Enhancement in Laser Induced Field Emission in Tungsten......Page 146
7. Intersystem Crossing (ISC) and Relativistic Effect......Page 148
References......Page 149
1. Introduction......Page 151
2.1. Flat bands and localized eigenstates......Page 154
2.2. Plateaus and jumps in the magnetization curve......Page 155
2.3. Ground-state residual entropy and low-temperature thermodynamics......Page 156
3.1. Flat one-electron band and localized electron eigenstates......Page 159
3.2. Hole concentration in dependence on the chemical potential......Page 161
3.3. Ground-state residual entropy and low-temperature thermodynamics......Page 162
References......Page 164
1. Introduction......Page 167
1. Introduction......Page 175
2. Theories......Page 176
3. Surface Plasmon Polaritons in Metallic Nanowire Arrays......Page 181
4. Comparison of Methods......Page 182
References......Page 184
The Surprising Phenomenon of Level Merging in Finite Fermi Systems J. W. Clark, V. A. Khodel, H. Li and M. V. Zverev......Page 185
1. Introduction......Page 186
2. How Merging of Single-Particle Levels Can Arise......Page 187
3. An Illustrative Numerical Example......Page 190
4. Implications of Level Mergence in Nuclear Physics......Page 191
5. Implications of Level Mergence in Atomic Physics......Page 192
6. Conclusions......Page 194
References......Page 195
1. Introduction......Page 197
2. Viscous Part of Associated Mass......Page 199
2.1. Stationary motion......Page 200
2.2. Oscillatory regime......Page 201
4. Conclusion......Page 202
References......Page 203
1. Introduction......Page 204
2.1. Model......Page 207
2.2. Geometric dependence......Page 209
2.3. Time dependence......Page 210
References......Page 213
1. Introduction......Page 215
2. A Model of Discrete Opinions......Page 216
3. Dynamical Evolution of a Randomly Connected Social Network......Page 220
4. Applications to Stability of Social Networks: Communities with Poisson- and Dirac-Versus Power-Law Probability Distributions......Page 222
5. Comparison of Opinion Formation in Societies having a Connectivity Architecture with Uniform and Power-Law Distributions......Page 223
6. Conclusion......Page 226
References......Page 227
Nanolayered Max Phases From ab initio Calculations W. Luo, C. M. Fang and R. Ahuja......Page 228
References......Page 232
1. Introduction......Page 233
2. Theory and Model......Page 234
3. Results and Discussion......Page 237
4. Concluding Remarks......Page 241
References......Page 242
1. Introduction......Page 244
2. The Model......Page 247
4. Nuclear Radii......Page 251
5. Binding Energies......Page 252
7. Conclusion......Page 255
References......Page 256
1. Introduction......Page 257
2. Formalism......Page 259
3. Results and Discussion......Page 262
4. Conclusion......Page 268
References......Page 269
1. Introduction......Page 271
2. Effective Theory Approach......Page 272
3.2. Method II: From wavefunction......Page 274
Acknowledgments......Page 276
References......Page 277
1. Introduction......Page 278
2.1. Mapping of the fermionic N wave function onto a N boson wave function......Page 279
2.2. N OCM with bosonic properties......Page 281
2.3. Effective 2 potentials with OCM......Page 282
3.1. 0+ states in 12C......Page 283
3.2. 0+ states in 16O......Page 286
References......Page 289
1. Introduction......Page 290
2. Semiclassical Model Versus Fully Quantum Mechanical Model and a Condition on the Semiclassical Limit......Page 291
3. The Derivation of TDSE from TISE: An Illustration by the Jaynes-Cummings Model......Page 293
4. Solution of TDSE from TISE......Page 295
Acknowledgments......Page 296
References......Page 297
Tunneling and Hopping Between Domains in the Metal-Insulator Transition in Two-Dimensions D. Neilson and A. Hamilton......Page 298
References......Page 303
1. Introduction......Page 305
3. Physical Approach......Page 306
4. Meeting of Two Cultures......Page 308
5. Ergometry on a Many-Body Model......Page 309
References......Page 310
1. Introduction......Page 312
2. Experiments and Results......Page 313
Acknowledgments......Page 320
References......Page 321
2. Brief Thermodynamics' Sketch......Page 322
5. Jaynes Reformulation of Statistical Mechanics......Page 324
6. Our New \Thermal-Flavored" Axiomatics for Statistical Mechanics......Page 325
References......Page 326
1. Introduction......Page 328
2. Model......Page 333
3. Results......Page 334
4. Conclusion......Page 337
References......Page 338
1. Introduction......Page 340
2. The Approximated Shape Equation and its Exact Solution......Page 342
3. Exact Shape Equation......Page 345
Appendix A. The rst-order variations of F? and Fk......Page 347
References......Page 348
1. Introduction......Page 350
2. Bio-Organisms Using Photosynthesis......Page 351
3. The Basic Molecules of Photosynthesis......Page 352
3.1. The electronic transfer mechanisms in the peridinin and chlorophyll molecules......Page 353
4. The Energy Transfer by Radiation in Photosynthesis......Page 355
5. The Structure and Organization of Chlorophyl......Page 357
7. Conclusion......Page 358
References......Page 359
1. Introduction......Page 360
2. Dielectric and Optical Response......Page 362
3. Electrical Conductivity of Partially Ionized Argon Plasmas......Page 364
4. Laser Excited Clusters......Page 365
5. Single-Time Properties......Page 366
6. Two-Time Properties......Page 367
7. Collective Excitations......Page 371
8. Discussion and Conclusion......Page 372
References......Page 373
1. Introduction......Page 375
2. N-Representability Conditions on F[ ] in HKS-DFT......Page 376
3. The Non-Universal Character of F[ ] in HKS-DFT......Page 378
3.1. The non-universality of F[ ] in ab initio DFT......Page 379
4. Conclusion......Page 384
References......Page 385
1. Introduction......Page 388
2.1. CBF theory......Page 390
2.2. Generalized time-dependent Hartree{Fock (HF) theory......Page 391
2.3. Density response function with pair correlations......Page 392
3. Results......Page 393
Appendix A. Explicit Form of the Equations of Motion......Page 396
References......Page 398
On Time Dependent DFT With SIC J. Messud, P. M. Dinh, E. Suraud and P.-G. Reinhard......Page 399
1.1. The formalism......Page 400
2.1. The formalism......Page 402
2.2. Existence of a solution......Page 403
4. Conclusion......Page 404
References......Page 405
1. Introduction......Page 407
2. A General Model of Discrete Automata......Page 408
3. Mean-Field Approach......Page 410
4. Speci c Voting Rules: Majority and Minority......Page 411
5. Binary Mixtures of Opportunists (O) and Contrarians (C)......Page 412
6. Discussion......Page 415
References......Page 416
1.1. Atmospheric rainbow......Page 417
1.2. Nuclear rainbow......Page 420
2.1. Feshbach's formalism for the nucleus-nucleus optical potential......Page 421
2.2. Double-folding model......Page 422
3. Rainbow Scattering as a Probe of the Nuclear Incompressibility......Page 424
References......Page 428
Non-Monotonic Alpha- and 6Li-Potentials from Energy Density Functional Formalism S. Hossain, A. K. Basak, M. A. Uddin, M. N. A. Abdullah, I. Reichstein and F. B. Malik......Page 430
2. Energy-Density Functional (EDF) Formalism......Page 431
3. Parametrization of the Projectile-Target Potentials......Page 432
4. Analyses and Results......Page 433
5. Conclusion......Page 439
References......Page 440
1. Introduction......Page 442
2. Reminder of the Model......Page 444
3. Surface Cluster Model......Page 446
4. Method of Solution......Page 447
5. Numerical Results......Page 448
References......Page 449
1. Introduction......Page 450
3. Results and Discussion......Page 451
4. Conclusion......Page 455
References......Page 456
1. Introduction......Page 457
2. Experimental......Page 458
3. Results and Discussion......Page 459
References......Page 462
1. Introduction......Page 463
1.1. Spin Hamiltonian of Cr3+ ions in sapphire......Page 464
2. Experimental......Page 466
3. Results and Discussion......Page 467
Acknowledgments......Page 471
References......Page 472
1. Introduction......Page 473
3. Results and Discussion......Page 474
3.1. Spin Hamiltonian of nitrogen in diamond......Page 477
3.2. Angular dependence of resonance magnetic eld position of 14N and 15N spectra......Page 478
References......Page 481
1. Introduction......Page 482
2. Experimental......Page 483
3. Results and Discussion......Page 484
References......Page 489
1. Introduction......Page 491
2. The Constrained Paths Integral......Page 492
3. Restricted Motion of the Brownian Particle......Page 493
References......Page 496
Author Index......Page 498