Condensed Matter Physics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

Author(s): Michael P. Marder
Edition: 2
Publisher: Wiley
Year: 2010

Language: English
Pages: 984
Tags: Физика;Физика твердого тела;

Front matter......Page 1
Contents......Page 5
Preface......Page 19
Part I ATOMIC STRUCTURE......Page 29
1.1 Introduction......Page 31
1.1.1 Why are Solids Crystalline?......Page 32
1.2.1 Bravais Lattices......Page 34
1.2.2 Enumeration of Two-Dimensional Bravais Lattices......Page 35
1.2.4 Primitive Cells......Page 37
1.2.5 Wigner-Seitz Cells......Page 38
1.3.1 The Space Group......Page 39
1.3.2 Translation and Point Groups......Page 40
Problems......Page 42
References......Page 44
2.1 Introduction......Page 45
2.2.2 The Face-Centered Cubic Lattice......Page 48
2.2.3 The Body-Centered Cubic Lattice......Page 50
2.2.5 The Hexagonal Close-Packed Lattice......Page 51
2.3 Compounds......Page 52
2.3.1 Rocksalt—Sodium Chloride......Page 53
2.3.3 Fluorite—Calcium Fluoride......Page 54
2.3.4 Zincblende—Zinc Sulfide......Page 55
2.3.6 Perovskite—Calcium Titanate......Page 56
2.4.1 Fourteen Bravais Lattices and Seven Crystal Systems......Page 58
2.5.1 Thirty-Two Crystallographic Point Groups......Page 61
2.5.2 Two Hundred Thirty Distinct Lattices......Page 64
2.6.2 Piezoelectricity......Page 65
Problems......Page 66
References......Page 69
3.1 Introduction......Page 71
3.2.1 Special Conditions for Scattering......Page 72
3.2.2 Elastic Scattering from Single Atom......Page 74
3.2.3 Wave Scattering from Many Atoms......Page 75
3.2.4 Lattice Sums......Page 76
3.2.5 Reciprocal Lattice......Page 77
3.2.6 Miller Indices......Page 79
3.2.7 Scattering from a Lattice with a Basis......Page 81
3.3 Experimental Methods......Page 82
3.3.1 Laue Method......Page 84
3.3.2 Rotating Crystal Method......Page 85
3.3.3 Powder Method......Page 87
3.4.1 Interaction of X-Rays with Matter......Page 88
3.4.2 Production of X-Rays......Page 89
3.4.4 Electrons......Page 91
3.4.5 Deciphering Complex Structures......Page 92
3.4.6 Accuracy of Structure Determinations......Page 93
3.5.1 Why Bragg Peaks Survive Atomic Motions......Page 94
3.5.2 Extended X-Ray Absorption Fine Structure (EXAFS)......Page 95
3.5.3 Dynamic Light Scattering......Page 96
3.5.4 Application to Dilute Solutions......Page 98
Problems......Page 99
References......Page 101
4.2 Geometry of Interfaces......Page 105
4.2.1 Coherent and Commensurate Interfaces......Page 106
4.2.2 Stacking Period and Interplanar Spacing......Page 107
4.2.3 Other Topics in Surface Structure......Page 109
4.3.1 Low-Energy Electron Diffraction (LEED)......Page 110
4.3.3 Molecular Beam Epitaxy (MBE)......Page 112
4.3.4 Field Ion Microscopy (FIM)......Page 113
4.3.5 Scanning Tunneling Microscopy (STM)......Page 114
Problems......Page 119
References......Page 122
5.2.1 Brownian Motion and the Diffusion Equation......Page 125
5.2.2 Diffusion......Page 126
5.2.3 Derivation from Master Equation......Page 127
5.2.4 Connection Between Diffusion and Random Walks......Page 128
5.3.1 Equilibrium Structures......Page 129
5.3.2 Phase Diagrams......Page 130
5.3.3 Superlattices......Page 131
5.3.4 Phase Separation......Page 132
5.3.5 Nonequilibrium Structures in Alloys......Page 134
5.3.6 Dynamics of Phase Separation......Page 136
5.4.1 Monte Carlo......Page 138
5.4.2 Molecular Dynamics......Page 140
5.5.1 Order Parameters and Long- and Short-Range Order......Page 141
5.5.2 Packing Spheres......Page 142
5.6 Glasses......Page 144
5.7.1 Nematics, Cholesterics, and Smectics......Page 148
5.7.2 Liquid Crystal Order Parameter......Page 150
5.8.1 Ideal Radius of Gyration......Page 151
5.9.2 Diffusing-Wave Spectroscopy......Page 156
5.10 Quasicrystals......Page 161
5.10.1 One-Dimensional Quasicrystal......Page 162
5.10.2 Two-Dimensional Quasicrystals—Penrose Tiles......Page 167
5.10.3 Experimental Observations......Page 169
Problems......Page 171
References......Page 177
Part II ELECTRONIC STRUCTURE......Page 181
6.1 Introduction......Page 183
6.2 Starting Hamiltonian......Page 185
6.3 Densities of States......Page 187
6.3.1 Definition of Density of States D......Page 188
6.3.2 Results for Free Electrons......Page 189
6.4 Statistical Mechanics of Noninteracting Electrons......Page 191
6.5 Sommerfeld Expansion......Page 194
6.5.1 Specific Heat of Noninteracting Electrons at Low Temperatures......Page 197
Problems......Page 199
References......Page 201
7.2 Translational Symmetry—Bloch's Theorem......Page 203
7.2.1 One Dimension......Page 204
7.2.2 Bloch's Theorem in Three Dimensions......Page 208
7.2.3 Formal Demonstration of Bloch's Theorem......Page 210
7.2.4 Additional Implications of Bloch's Theorem......Page 211
7.2.5 Van Hove Singularities......Page 214
7.2.6 Kronig-Penney Model......Page 217
7.3 Rotational Symmetry—Group Representations......Page 220
7.3.1 Classes and Characters......Page 226
7.3.2 Consequences of point group symmetries for Schr鰀inger's equation......Page 229
Problems......Page 231
References......Page 234
8.1 Introduction......Page 235
8.2 Nearly Free Electrons......Page 236
8.2.1 Degenerate Perturbation Theory......Page 238
8.3 Brillouin Zones......Page 239
8.3.1 Nearly Free Electron Fermi Surfaces......Page 242
8.4.1 Linear Combinations of Atomic Orbitals......Page 247
8.4.2 Wannier Functions......Page 250
8.4.3 Geometric Phases......Page 251
8.4.4 Tight Binding Model......Page 254
Problems......Page 255
References......Page 260
9.1 Introduction......Page 261
9.2 Hartree and Hartree-Fock Equations......Page 262
9.2.2 Hartree-Fock Equations......Page 263
9.2.3 Numerical Implementation......Page 267
9.2.4 Hartree-Fock Equations for Jellium......Page 270
9.3 Density Functional Theory......Page 272
9.3.1 Thomas-Fermi Theory......Page 275
9.3.2 Stability of Matter......Page 277
9.4.1 Integrals by Monte Carlo......Page 280
9.4.2 Quantum Monte Carlo Methods......Page 281
9.4.3 Physical Results......Page 282
9.5 Kohn-Sham Equations......Page 283
Problems......Page 286
References......Page 290
10.1 Introduction......Page 293
10.2.1 Pseudopotentials and Orthogonalized Planes Waves (OPW)......Page 294
10.2.3 Plane Waves......Page 299
10.2.4 Linear Augmented Plane Waves (LAPW)......Page 302
10.3 Definition of Metals, Insulators, and Semiconductors......Page 305
10.4 Brief Survey of the Periodic Table......Page 307
10.4.1 Nearly Free Electron Metals......Page 308
10.4.2 Noble Gases......Page 310
10.4.3 Semiconductors......Page 311
10.4.4 Transition Metals......Page 312
Problems......Page 314
References......Page 319
Part III MECHANICAL PROPERTIES......Page 321
11.1 Introduction......Page 323
11.1.1 Radii of Atoms......Page 325
11.2 Noble Gases......Page 327
11.3 Ionic Crystals......Page 329
11.3.1 Ewald Sums......Page 330
11.4 Metals......Page 333
11.4.1 Use of Pseudopotentials......Page 335
11.5 Band Structure Energy......Page 336
11.5.1 Peierls Distortion......Page 337
11.5.2 Structural Phase Transitions......Page 339
11.7 Cohesive Energy from Band Calculations......Page 340
11.8 Classical Potentials......Page 341
Problems......Page 343
References......Page 346
12.2 Nonlinear Elasticity......Page 349
12.2.1 Rubber Elasticity......Page 350
12.2.2 Larger Extensions of Rubber......Page 352
12.3 Linear Elasticity......Page 353
12.3.1 Solids of Cubic Symmetry......Page 354
12.3.2 Isotropie Solids......Page 356
12.4.1 Liquid Crystals......Page 360
12.4.2 Granular Materials......Page 363
Problems......Page 364
References......Page 367
13.1 Introduction......Page 369
13.2.1 Classical Vibrations in One Dimension......Page 370
13.2.2 Classical Vibrations in Three Dimensions......Page 374
13.2.3 Normal Modes......Page 375
13.2.4 Lattice with a Basis......Page 376
13.3 Vibrations of a Quantum-Mechanical Lattice......Page 379
13.3.1 Phonon Specific Heat......Page 382
13.3.2 Einstein and Debye Models......Page 386
13.3.3 Thermal Expansion......Page 389
13.4 Inelastic Scattering from Phonons......Page 391
13.4.1 Neutron Scattering......Page 392
13.4.2 Formal Theory of Neutron Scattering......Page 394
13.4.3 Averaging Exponentials......Page 398
13.4.4 Evaluation of Structure Factor......Page 400
13.4.5 Kohn Anomalies......Page 401
13.5 The M鰏sbauer Effect......Page 402
Problems......Page 404
References......Page 405
14.1 Introduction......Page 407
14.2 Dislocations......Page 409
14.2.1 Experimental Observations of Dislocations......Page 411
14.2.3 One-Dimensional Dislocations: Frenkel-Kontorova Model......Page 414
14.3.1 Impossibility of Crystalline Order in Two Dimensions......Page 417
14.3.2 Orientational Order......Page 419
14.3.3 Kosterlitz-Thouless-Berezinskii Transition......Page 420
14.4.1 Fracture of a Strip......Page 427
14.4.2 Stresses Around an Elliptical Hole......Page 430
14.4.3 Stress Intensity Factor......Page 432
14.4.4 Atomic Aspects of Fracture......Page 433
Problems......Page 434
References......Page 437
15.2.1 Euler's Equation......Page 441
15.2.2 Navier-Stokes Equation......Page 443
15.3 Polymeric Solutions......Page 444
15.4 Plasticity......Page 451
15.5 Superfluid 4He......Page 455
15.5.1 Two-Fluid Hydrodynamics......Page 458
15.5.2 Second Sound......Page 459
15.5.3 Direct Observation of Two Fluids......Page 461
15.5.4 Origin of Superfluidity......Page 462
15.5.5 Lagrangian Theory of Wave Function......Page 467
15.5.6 Superfluid 3He......Page 470
Problems......Page 471
References......Page 475
Part IV ELECTRON TRANSPORT......Page 479
16.1.1 Drude Model......Page 481
16.2 Semiclassical Electron Dynamics......Page 483
16.2.1 Bloch Oscillations......Page 484
16.2.2 k P Method......Page 485
16.3 Noninteracting Electrons in an Electric Field......Page 487
16.3.1 Zener Tunneling......Page 490
16.4.1 Formal Dynamics of Wave Packets......Page 493
16.4.2 Dynamics from Lagrangian......Page 495
16.5 Quantizing Semiclassical Dynamics......Page 498
16.5.1 Wannier-Stark Ladders......Page 500
16.5.2 de Haas-van Alphen Effect......Page 501
16.5.3 Experimental Measurements of Fermi Surfaces......Page 502
Problems......Page 505
References......Page 508
17.2 Boltzmann Equation......Page 511
17.2.1 Boltzmann Equation......Page 513
17.2.2 Including Anomalous Velocity......Page 514
17.2.3 Relaxation Time Approximation......Page 515
17.2.4 Relation to Rate of Production of Entropy......Page 517
17.3 Transport Symmetries......Page 518
17.3.1 Onsager Relations......Page 519
17.4.1 Electrical Current......Page 520
17.4.2 Effective Mass and Holes......Page 522
17.4.3 Mixed Thermal and Electrical Gradients......Page 523
17.4.4 Wiedemann-Franz Law......Page 524
17.4.5 Thermopower—Seebeck Effect......Page 525
17.4.7 Thomson Effect......Page 526
17.4.8 Hall Effect......Page 528
17.4.9 Magnetoresistance......Page 530
17.4.10 Anomalous Hall Effect......Page 531
17.5.1 Basic Ideas......Page 532
17.5.2 Statistical Mechanics of Quasi-Particles......Page 534
17.5.3 Effective Mass......Page 536
17.5.4 Specific Heat......Page 538
17.5.5 Fermi Liquid Parameters......Page 539
17.5.6 Traveling Waves......Page 540
17.5.7 Comparison with Experiment in 3He......Page 543
Problems......Page 544
References......Page 548
18.2.1 General Formula for Relaxation Time......Page 551
18.2.2 Matthiessen's Rule......Page 556
18.2.3 Fluctuations......Page 557
18.3.1 Impurities and Disorder......Page 558
18.3.2 Non-Compensated Impurities and the Mott Transition......Page 559
18.4.1 Tight-Binding Models of Disordered Solids......Page 562
18.4.2 Green's Functions......Page 564
18.4.3 Single Impurity......Page 567
18.4.4 Coherent Potential Approximation......Page 569
18.5 Localization......Page 570
18.5.1 Exact Results in One Dimension......Page 572
18.5.2 Scaling Theory of Localization......Page 575
18.5.3 Comparison with Experiment......Page 579
18.6 Luttinger Liquids......Page 581
18.6.1 Density of States......Page 585
Problems......Page 588
References......Page 592
19.1 Introduction......Page 595
19.2 Metal Interfaces......Page 596
19.2.1 Work Functions......Page 597
19.2.2 Schottky Barrier......Page 598
19.2.3 Contact Potentials......Page 600
19.3 Semiconductors......Page 602
19.3.1 Pure Semiconductors......Page 603
19.3.2 Semiconductor in Equilibrium......Page 606
19.3.3 Intrinsic Semiconductor......Page 608
19.3.4 Extrinsic Semiconductor......Page 609
19.4 Diodes and Transistors......Page 611
19.4.1 Surface States......Page 614
19.4.2 Semiconductor Junctions......Page 615
19.4.3 Boltzmann Equation for Semiconductors......Page 618
19.4.4 Detailed Theory of Rectification......Page 620
19.4.5 Transistor......Page 623
19.5.1 Heterostructures......Page 626
19.5.2 Quantum Point Contact......Page 628
19.5.3 Quantum Dot......Page 631
Problems......Page 634
References......Page 635
Part V OPTICAL PROPERTIES......Page 637
20.1 Introduction......Page 639
20.2 Maxwell's Equations......Page 641
20.2.1 Traveling Waves......Page 643
20.2.2 Mechanical Oscillators as Dielectric Function......Page 644
20.3 Kramers-Kronig Relations......Page 646
20.3.1 Application to Optical Experiments......Page 648
20.4.1 Born Approximation......Page 651
20.4.2 Susceptibility......Page 655
Problems......Page 656
References......Page 659
21.2 Cyclotron Resonance......Page 661
21.2.1 Electron Energy Surfaces......Page 664
21.3.1 Direct Transitions......Page 666
21.3.2 Indirect Transitions......Page 667
21.4.1 Mott-Wannier Excitons......Page 669
21.4.2 Frenkel Excitons......Page 672
21.5.1 Solar Cells......Page 673
21.5.2 Lasers......Page 674
Problems......Page 680
References......Page 684
22.2.1 Ferroelectrics......Page 687
22.2.2 Berry phase theory of polarization......Page 689
22.3 Optical Modes in Ionic Crystals......Page 692
22.3.1 Polaritons......Page 694
22.3.2 Polarons......Page 697
22.4 Point Defects and Color Centers......Page 702
22.4.1 Vacancies......Page 703
22.4.2 F Centers......Page 704
22.4.3 Electron Spin Resonance and Electron Nuclear Double Resonance......Page 705
22.4.5 Franck-Condon Effect......Page 707
22.4.6 Urbach Tails......Page 711
Problems......Page 712
References......Page 714
23.1.1 Plasma Frequency......Page 717
23.2 Metals at Low Frequencies......Page 720
23.2.1 Anomalous Skin Effect......Page 722
23.3 Plasmons......Page 723
23.3.1 Experimental Observation of Plasmons......Page 724
23.4 Interband Transitions......Page 726
23.5 Brillouin and Raman Scattering......Page 729
23.5.1 Brillouin Scattering......Page 730
23.6.1 Measurement of Work Functions......Page 731
23.6.2 Angle-Resolved Photoemission......Page 734
23.6.3 Core-Level Photoemission and Charge-Transfer Insulators......Page 738
Problems......Page 744
References......Page 747
Part VI MAGNETISM......Page 749
24.2.1 From Magnetic Moments......Page 751
24.2.2 From Conductivity......Page 752
24.2.3 From a Free Energy......Page 753
24.3 Magnetic Dipole Moments......Page 755
24.3.1 Spontaneous Magnetization of Ferromagnets......Page 758
24.3.2 Ferrimagnets......Page 759
24.3.3 Antiferromagnets......Page 761
24.4 Mean Field Theory and the Ising Model......Page 762
24.4.1 Domains......Page 764
24.4.2 Hysteresis......Page 767
24.5.1 Alloy Superlattices......Page 768
24.6 Critical Phenomena......Page 771
24.6.1 Landau Free Energy......Page 772
24.6.2 Scaling Theory......Page 778
Problems......Page 782
References......Page 785
25.1 Introduction......Page 787
25.2 Atomic Magnetism......Page 789
25.2.1 Hund's Rules......Page 790
25.2.2 Curie's Law......Page 794
25.3 Magnetism of the Free-Electron Gas......Page 797
25.3.1 Pauli Paramagnetism......Page 798
25.3.2 Landau Diamagnetism......Page 799
25.3.3 Aharonov-Bohm Effect......Page 802
25.4 Tightly Bound Electrons in Magnetic Fields......Page 805
25.5.1 Integer Quantum Hall Effect......Page 808
25.5.2 Fractional Quantum Hall Effect......Page 813
Problems......Page 819
References......Page 822
26.2.1 Heitler-London Calculation......Page 825
26.3 Heisenberg Model......Page 830
26.3.1 Indirect Exchange and Superexchange......Page 832
26.3.3 Spin Waves......Page 833
26.3.4 Spin Waves in Antiferromagnets......Page 836
26.4.1 Stoner Model......Page 839
26.4.2 Calculations Within Band Theory......Page 841
26.5.1 Giant Magnetoresistance......Page 843
26.5.2 Spin Torque......Page 844
26.6 Kondo Effect......Page 847
26.6.1 Scaling Theory......Page 852
26.7 Hubbard Model......Page 856
26.7.1 Mean-Field Solution......Page 857
Problems......Page 860
References......Page 863
27.1 Introduction......Page 867
27.2 Phenomenology of Superconductivity......Page 868
27.2.1 Phenomenological Free Energy......Page 869
27.2.2 Thermodynamics of Superconductors......Page 871
27.2.3 Landau-Ginzburg Free Energy......Page 872
27.2.4 Type I and Type II Superconductors......Page 873
27.2.5 Flux Quantization......Page 878
27.2.6 The Josephson Effect......Page 880
27.2.7 Circuits with Josephson Junction Elements......Page 882
27.2.8 SQUIDS......Page 883
27.2.9 Origin of Josephson's Equations......Page 884
27.3 Microscopic Theory of Superconductivity......Page 886
27.3.1 Electron-Ion Interaction......Page 887
27.3.2 Instability of the Normal State: Cooper Problem......Page 891
27.3.3 Self-Consistent Ground State......Page 893
27.3.4 Thermodynamics of Superconductors......Page 897
27.3.5 Superconductor in External Magnetic Field......Page 901
27.3.6 Derivation of Meissner Effect......Page 904
27.3.7 Comparison with Experiment......Page 907
27.3.8 High-Temperature Superconductors......Page 909
Problems......Page 916
References......Page 918
APPENDICES......Page 923
A.2 Area Under Peaks......Page 925
A.3 Three-Dimensional Sum......Page 926
A.4 Discrete Case......Page 927
A.6 Using the Fast Fourier Transform......Page 928
References......Page 930
B.1 Functionals and Functional Derivatives......Page 931
B.2 Time-Independent Schr鰀inger Equation......Page 932
B.3 Time-Dependent Schr鰀inger Equation......Page 933
References......Page 934
C.1.2 Operators......Page 935
C.1.3 Hamiltonians......Page 936
C.2.1 Bosons......Page 937
C.2.2 Fermions......Page 938
Index......Page 941
card - Fundamental Physical constants......Page 981