Computing the Optimally Fitted Spike Train for a Synapse

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Neural Computation 13, 2477–2494 (2001)
Experimental data have shown that synapses are heterogeneous: different
synapses respond with different sequences of amplitudes of postsynaptic
responses to the same spike train. Neither the role of synaptic dynamics
itself nor the role of the heterogeneity of synaptic dynamics for computations
in neural circuits is well understood. We present in this article
two computational methods that make it feasible to compute for a given
synapse with known synaptic parameters the spike train that is optimally
fitted to the synapse in a certain sense. With the help of these methods,
one can compute, for example, the temporal pattern of a spike train (with
a given number of spikes) that produces the largest sum of postsynaptic
responses for a specific synapse. Several other applications are also
discussed. To our surprise, we find that most of these optimally fitted
spike trains match common firing patterns of specific types of neurons
that are discussed in the literature. Hence, our analysis provides a possible
functional explanation for the experimentally observed regularity
in the combination of specific types of synapses with specific types of
neurons in neural circuits.

Author(s): Maass W., Natschlager T.

Language: English
Commentary: 278763
Tags: Информатика и вычислительная техника;Искусственный интеллект;Нейронные сети