Computer-Aided Control Systems Design: Practical Applications Using MATLAB® and Simulink® supplies a solid foundation in applied control to help you bridge the gap between control theory and its real-world applications. Working from basic principles, the book delves into control systems design through the practical examples of the ALSTOM gasifier system in power stations and underwater robotic vehicles in the marine industry. It also shows how powerful software such as MATLAB® and Simulink® can aid in control systems design.
Make Control Engineering Come Alive with Computer-Aided Software
Emphasizing key aspects of the design process, the book covers the dynamic modeling, control structure design, controller design, implementation, and testing of control systems. It begins with the essential ideas of applied control engineering and a hands-on introduction to MATLAB and Simulink. It then discusses the analysis, model order reduction, and controller design for a power plant and the modeling, simulation, and control of a remotely operated vehicle (ROV) for pipeline tracking. The author explains how to obtain the ROV model and verify it by using computational fluid dynamic software before designing and implementing the control system. In addition, the book details the nonlinear subsystem modeling and linearization of the ROV at vertical plane equilibrium points. Throughout, the author delineates areas for further study. Appendices provide additional information on various simulation models and their results.
Learn How to Perform Simulations on Real Industry Systems
A step-by-step guide to computer-aided applied control design, this book supplies the knowledge to help you deal with control problems in industry. It is a valuable reference for anyone who wants a better understanding of the theory and practice of basic control systems design, analysis, and implementation.
Author(s): Cheng Siong Chin
Publisher: CRC Press
Year: 2013
Language: English
Pages: xiv+368
City: Boca Raton
Tags: Библиотека;Компьютерная литература;Matlab / Simulink;
Computer-Aided Control Systems Design: Practical Applications Using
MATLAB® and Simulink®......Page 4
Contents......Page 6
Foreword......Page 10
Outline of the Book......Page 12
Acknowledgments......Page 14
1.1 Historical Review......Page 16
1.2 Computer-Aided Control System Design......Page 17
1.3 Control System Fundamentals......Page 19
1.3.1 Open-Loop Systems......Page 21
1.3.2 Closed-Loop Systems......Page 22
1.4.2 Underwater Robotic Vehicle Control System......Page 23
1.4.3 Unmanned Aerial Vehicle Control System......Page 24
1.5 Control System Design......Page 25
2.2.1 Vector......Page 28
2.2.2 Matrices......Page 30
2.2.4 Polynomials......Page 32
2.2.5 M-Files and Function......Page 34
2.3 Solving a Differential Equation......Page 35
2.3.1 MATLAB Open-Loop Transfer Function Modeling......Page 37
2.3.2 Simulink Open-Loop Transfer Function Modeling......Page 40
2.3.3 Simulink Open-Loop System Modeling......Page 44
2.4.1 PID Tuning Using Simulink......Page 60
2.4.2 PID Tuning Using the SISO Tool......Page 62
3.1 Gasifier System Description and Notation......Page 66
3.2 Inherent Properties Analysis......Page 67
3.3 Control Structure Design......Page 76
3.4 Gasifier System Analysis......Page 79
3.5 Model Order Reduction (MOR)......Page 87
3.6.1 LQR Theory......Page 92
3.6.3 Performance Tests on LQR Design......Page 96
3.7.1 LQG Theory......Page 98
3.7.2 Loop Transfer Recovery (LTR)......Page 99
3.7.3 LQG/LTR Design Steps......Page 101
3.8 H-Infinity Optimization......Page 102
3.8.1 Generalized Plant......Page 104
3.8.2 H-Infinity Design Assumptions......Page 105
3.8.4 Mixed Sensitivity Problem Formulation......Page 106
3.8.5 Selection of Weighting Function......Page 108
3.8.6 H-Infinity Design Steps......Page 110
3.9 H2 Optimization......Page 120
3.9.1 H2 Design Steps......Page 122
3.10.1 Sensitivity (S)......Page 131
3.10.3 MIMO System Asymptotic Stability (MIMO AS)......Page 132
3.10.5 Internal Stability (IS)......Page 133
3.10.7 Final Value Theorem (FVT)......Page 134
3.11 Comparison of All Controllers......Page 135
4.1 Background of the URV......Page 140
4.2 Basic Design of a ROV and Tasks Undertaken......Page 141
4.3 Need for ROV Control......Page 144
4.4 Dynamic Equation Using the Newtonian Method......Page 145
4.5 Kinematics Equations and Earth-Fixed Frame Equation......Page 150
4.6 RRC ROV Model......Page 153
4.6.1 Rigid-Body Mass and Coriolis and Centripetal Matrix......Page 154
4.6.2 Hydrodynamic Added Mass Forces......Page 156
Assumptions 4.1 Hydrodynamic Added Mass Matrix......Page 157
Result 4.1 Hydrodynamic Added Mass Matrix......Page 158
4.6.3 Hydrodynamic Damping Forces......Page 169
Result 4.2 Hydrodynamic Damping Matrix......Page 170
4.6.4 Buoyancy and Gravitational Forces......Page 193
Assumptions 4.3 Buoyancy and Gravitational Force Matrix......Page 195
4.6.5 Thruster’s Configuration Model......Page 197
4.7 Perturbed RRC ROV Model......Page 201
4.7.1 Perturbation Bound on M and C Matrix......Page 203
4.8 Verification of ROV Model......Page 205
5.1 Nonlinear ROV Subsystem Model......Page 216
5.1.1 Station-Keeping Model......Page 217
5.1.2 Horizontal and Vertical Plane Subsystem Models......Page 220
5.2 Linear ROV Subsystem Model......Page 226
5.3.1 Multivariable PID Control Design......Page 230
5.3.2 Sliding-Mode Control......Page 244
5.3.3 Velocity State-Feedback Linearization......Page 249
5.3.4 Fuzzy Logic Control......Page 254
5.3.5 Cascaded System Control on the Reduced ROV Model......Page 265
5.4 Linear ROV Control Systems Design......Page 270
5.4.1 Inherent Properties of Linear ROV System......Page 271
5.4.2 LQG/LTR Controller Design......Page 279
5.4.3 H-Infinity Controller Design......Page 282
References......Page 292
Appendix A1: State-Space Matrices for ALSTOM Gasifier System (Linear)......Page 296
1.1 State-Space Matrices at 0% Operating Condition......Page 297
1.2 State-Space Matrices at 50% Operating Condition......Page 302
1.3 State-Space Matrices at 100% Operating Condition......Page 307
2.1.1 100% Load Condition (Step Pressure Disturbance)......Page 312
2.1.2 100% Load Condition (Sinusoidal Pressure Disturbance)......Page 314
2.1.3 50% Load Condition (Step Pressure Disturbance)......Page 315
2.1.4 50% Load Condition (Sinusoidal Pressure Disturbance)......Page 317
2.1.5 0% Load Condition (Step Pressure Disturbance)......Page 318
2.1.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 320
2.2.1 100% Load Condition (Step Pressure Disturbance)......Page 321
2.2.4 50% Load Condition (Sinusoidal Pressure Disturbance)......Page 322
2.2.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 323
3.1 LQG......Page 324
3.1.1 100% Load Condition (Step Pressure Disturbance)......Page 325
3.1.2 100% Load Condition (Sinusoidal Pressure Disturbance)......Page 326
3.1.3 50% Load Condition (Step Pressure Disturbance)......Page 328
3.1.4 50% Load Condition (Sinusoidal Pressure Disturbance)......Page 329
3.1.5 0% Load Condition (Step Pressure Disturbance)......Page 331
3.1.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 332
3.2.3 50% Load Condition (Step Pressure Disturbance)......Page 334
3.2.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 335
4.1 LQG/LTR......Page 336
4.1.1 100% Load Condition (Step Pressure Disturbance)......Page 337
4.1.2 100% Load Condition (Sinusoidal Pressure Disturbance)......Page 338
4.1.3 50% Load Condition (Step Pressure Disturbance)......Page 340
4.1.4 50% Load Condition (Sinusoidal Pressure Disturbance)......Page 341
4.1.5 0% Load Condition (Step Pressure Disturbance)......Page 343
4.1.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 344
4.2.3 50% Load Condition (Step Pressure Disturbance)......Page 346
4.2.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 347
5.1 H2 Optimization Design......Page 348
5.1.1 100% Load Condition (Step Pressure Disturbance)......Page 349
5.1.2 100% Load Condition (Sinusoidal Pressure Disturbance)......Page 350
5.1.3 50% Load Condition (Step Pressure Disturbance)......Page 352
5.1.4 50% Load Condition (Sinusoidal Pressure Disturbance)......Page 353
5.1.5 0% Load Condition (Step Pressure Disturbance)......Page 355
5.1.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 356
5.2.3 50% Load Condition (Step Pressure Disturbance)......Page 358
5.2.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 359
6.1 H∞ Optimization Design......Page 360
6.1.1 100% Load Condition (Step Pressure Disturbance)......Page 361
6.1.2 100% Load Condition (Sinusoidal Pressure Disturbance)......Page 362
6.1.3 50% Load Condition (Step Pressure Disturbance)......Page 364
6.1.4 50% Load Condition (Sinusoidal Pressure Disturbance)......Page 365
6.1.5 0% Load Condition (Step Pressure Disturbance)......Page 367
6.1.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 368
6.2.3 50% Load Condition (Step Pressure Disturbance)......Page 370
6.2.6 0% Load Condition (Sinusoidal Pressure Disturbance)......Page 371
Index......Page 372