Computations in Algebraic Geometry with Macaulay 2

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book presents algorithmic tools for algebraic geometry, with experimental applications. It also introduces Macaulay 2, a computer algebra system supporting research in algebraic geometry, commutative algebra, and their applications. The algorithmic tools presented here are designed to serve readers wishing to bring such tools to bear on their own problems. The first part of the book covers Macaulay 2 using concrete applications; the second emphasizes details of the mathematics. Table of Contents Cover Computations in algebraic geometry with Macaulay 2 ISBN 3540422307 Preface Table of Contents List of Contributors Part I Introducing Macaulay 2 Ideals, Varieties and Macaulay 2 1 A Curve in A�ne Three-Space 2 Intersecting Our Curve With a Surface 3 Changing the Ambient Polynomial Ring 4 Monomials Under the Staircase 5 Pennies, Nickels, Dimes and Quarters Projective Geometry and Homological Algebra 1 The Twisted Cubic 2 The Cotangent Bundle of P3 3 The Cotangent Bundle of a Projective Variety 4 Intersections by Serre's Method 5 A Mystery Variety in P3 Data Types, Functions, and Programming 1 Basic Data Types 2 Control Structures 3 Input and Output 4 Hash Tables 5 Methods 6 Pointers to the Source Code Teaching the Geometry of Schemes 1 Distinguished Open Sets 2 Irreducibility 3 Singular Points 4 Fields of De nition 5 Multiplicity 6 Flat Families 7 B�ezout's Theorem 8 Constructing Blow-ups 9 A Classic Blow-up 10 Fano Schemes Part II Mathematical Computations Monomial Ideals 1 The Basics of Monomial Ideals 2 Primary Decomposition 3 Standard Pairs 4 Generic Initial Ideals 5 The Chain Property From Enumerative Geometry to Solving Systems of Polynomial Equations 1 Introduction 2 Solving Systems of Polynomials 3 Some Enumerative Geometry 4 Schubert Calculus 5 The 12 Lines: Reprise Resolutions and Cohomology over Complete Intersections 1 Matrix Factorizations 2 Graded Algebras 3 Universal Homotopies 4 Cohomology Operators 5 Computation of Ext Modules 6 Invariants of Modules 7 Invariants of Pairs of Modules Algorithms for the Toric Hilbert Scheme 1 Generating Monomial Ideals 2 Polyhedral Geometry 3 Local Equations 4 The Coherent Component of the Toric Hilbert Sheaf Algorithms Using the Exterior Algebra 1 Introduction 2 Basics of the Bernstein-Gel'fand-Gel'fand 3 The Cohomology and the Tate Resolution of a Sheaf 4 Cohomology and Vector Bundles 5 Cohomology and Monads 6 The Beilinson Monad 7 Examples Needles in a Haystack: Special Varieties via Small Fields 1 How to Make Random Curves up to Genus 14 2 Comparing Green's Conjecture for Curves 3 Pfa�an Calabi-Yau Threefolds in P6 D-modules and Cohomology of Varieties 1 Introduction 2 The Weyl Algebra and Gr�obner Bases 3 Bernstein-Sato Polynomials and Localization 4 Local Cohomology Computations 5 Implementation, Examples, Questions Index

Author(s): David Eisenbud, Daniel R. Grayson, Michael Stillman, Bernd Sturmfels
Edition: 2002
Publisher: Springer
Year: 2001

Language: English
Commentary: True vector PDF, cover, bookmarks, pagination
Pages: 346

Cover......Page 1
Computations in algebraic geometry with Macaulay 2......Page 4
ISBN 3540422307......Page 5
Preface......Page 6
Table of Contents......Page 12
List of Contributors......Page 16
Part I Introducing Macaulay 2......Page 18
1 A Curve in Aÿne Three-Space......Page 20
2 Intersecting Our Curve With a Surface......Page 21
3 Changing the Ambient Polynomial Ring......Page 23
4 Monomials Under the Staircase......Page 25
5 Pennies, Nickels, Dimes and Quarters......Page 29
Projective Geometry and Homological Algebra......Page 34
1 The Twisted Cubic......Page 35
2 The Cotangent Bundle of P3......Page 37
3 The Cotangent Bundle of a Projective Variety......Page 41
4 Intersections by Serre’s Method......Page 43
5 A Mystery Variety in P3......Page 45
1 Basic Data Types......Page 58
2 Control Structures......Page 61
3 Input and Output......Page 63
4 Hash Tables......Page 65
5 Methods......Page 69
6 Pointers to the Source Code......Page 70
1 Distinguished Open Sets......Page 72
2 Irreducibility......Page 73
3 Singular Points......Page 75
4 Fields of De nition......Page 77
5 Multiplicity......Page 78
6 Flat Families......Page 79
7 B´ezout’s Theorem......Page 80
8 Constructing Blow-ups......Page 81
9 A Classic Blow-up......Page 82
10 Fano Schemes......Page 85
Part II Mathematical Computations......Page 88
Monomial Ideals......Page 90
1 The Basics of Monomial Ideals......Page 91
2 Primary Decomposition......Page 94
3 Standard Pairs......Page 100
4 Generic Initial Ideals......Page 106
5 The Chain Property......Page 112
1 Introduction......Page 118
2 Solving Systems of Polynomials......Page 120
3 Some Enumerative Geometry......Page 129
4 Schubert Calculus......Page 131
5 The 12 Lines: Reprise......Page 138
Resolutions and Cohomology over Complete Intersections......Page 148
1 Matrix Factorizations......Page 150
2 Graded Algebras......Page 156
3 Universal Homotopies......Page 158
4 Cohomology Operators......Page 162
5 Computation of Ext Modules......Page 167
6 Invariants of Modules......Page 174
7 Invariants of Pairs of Modules......Page 187
Algorithms for the Toric Hilbert Scheme......Page 196
1 Generating Monomial Ideals......Page 199
2 Polyhedral Geometry......Page 205
3 Local Equations......Page 210
4 The Coherent Component of the Toric Hilbert......Page 216
1 Introduction......Page 232
2 Basics of the Bernstein-Gel’fand-Gel’fand......Page 235
3 The Cohomology and the Tate Resolution of a Sheaf......Page 239
4 Cohomology and Vector Bundles......Page 243
5 Cohomology and Monads......Page 247
6 The Beilinson Monad......Page 253
7 Examples......Page 258
Needles in a Haystack: Special Varieties via Small Fields......Page 268
1 How to Make Random Curves up to Genus 14......Page 270
2 Comparing Green’s Conjecture for Curves......Page 280
3 Pfaÿan Calabi-Yau Threefolds in P6......Page 284
D-modules and Cohomology of Varieties......Page 298
1 Introduction......Page 299
2 The Weyl Algebra and Gr¨obner Bases......Page 302
3 Bernstein-Sato Polynomials and Localization......Page 309
4 Local Cohomology Computations......Page 321
5 Implementation, Examples, Questions......Page 330
Index......Page 342