Author(s): Jorg Grunenberg
Edition: 1
Publisher: Wiley-VCH
Year: 2010
Language: English
Pages: 434
Computational Spectroscopy: Methods, Experiments and Applications......Page 1
Contents......Page 7
Preface......Page 13
List of Contributors......Page 15
1.1 Introduction......Page 19
1.2 Quantum Laws, or the Laws of Discreteness......Page 21
1.3 Quantum Theories of a Harmonic Oscillator......Page 23
1.3.1 Matrix Mechanics......Page 24
1.3.2 Wave Mechanics......Page 27
1.3.3 Dirac.s Operators for Creation and Destruction......Page 33
1.3.4 Discussion of Quantum Theories in Relation to an Harmonic Oscillator......Page 35
1.4 Diatomic Molecule as Anharmonic Oscillator......Page 38
1.5 Quantum Mechanics and Molecular Structure......Page 41
1.6 Conclusions......Page 51
References......Page 53
2.3 Chemical Shifts......Page 55
2.4 NICS and Aromaticity......Page 59
2.5 Spin–Spin Coupling Constants......Page 63
2.6 Solvent Effects......Page 71
2.7 Conclusions......Page 72
2.8 The Problem of the Error in Theoretical Calculations of Chemical Shifts and Coupling Constants......Page 73
References......Page 74
3.1 Introduction......Page 81
3.2 The General Model......Page 82
3.3.1 The Spin Hamiltonian......Page 84
3.3.2 Electronic Structure Theory......Page 85
3.3.3 Additional Terms in the Hamiltonian......Page 87
3.3.4 Linear Response Theory......Page 90
3.3.5 Linear Response Equations for Spin Hamiltonian Parameters......Page 94
3.3.6 Computational Aspects: Functionals and Basis Sets......Page 100
3.4.1 Structures and Magnetic Parameters......Page 102
3.4.2 Environmental Effects......Page 104
3.4.3 Short-Time Dynamical Effects......Page 107
3.5 Line Shapes......Page 116
3.6 Concluding Remarks......Page 119
References......Page 120
4.1 Introduction......Page 123
4.2 Applicability of Badger-Type Relationships in the Case of Diatomic Molecules......Page 130
4.3 Dissection of a Polyatomic Molecule into a Collection of Quasi-Diatomic Molecules: Local Vibrational Modes......Page 136
4.3.1 Localized Vibrational Modes......Page 140
4.3.2 The Adiabatic Internal Coordinate Modes......Page 142
4.3.3 Properties of Adiabatic Internal Coordinate Modes......Page 144
4.3.4 Characterization of Normal Modes in Terms of AICoMs......Page 145
4.3.5 Advantages of AICoMs......Page 147
4.4.1 Isolated Stretching Modes......Page 150
4.4.2 Local Mode Frequencies from Overtone Spectroscopy......Page 152
4.4.3 Local Mode Information via an Averaging of Frequencies: Intrinsic Frequencies......Page 153
4.4.4 Compliance Force Constants......Page 157
4.5 Badger-type Relationships for Polyatomic Molecules......Page 158
4.6 Conclusions......Page 161
References......Page 162
5.1 Introduction......Page 169
5.2 Quantum Mechanical Methods......Page 170
5.3 Modeling Solvent Effects......Page 175
5.4 Toward the Simulation of UV-Vis Spectra......Page 179
5.5 Some Numerical Examples......Page 180
5.6 Conclusions and Perspectives......Page 185
References......Page 186
6.1 Introduction......Page 191
6.2 The Molecular Hamiltonian......Page 192
6.3 Symmetry......Page 196
6.4 The Hellmann–Feynman Theorem......Page 197
6.5 The Born–Oppenheimer Approximation......Page 198
6.6 Interaction between a Molecule and an External Field......Page 200
6.7 Experimental Measurements of Dipole Moments......Page 202
6.8 The Born–Oppenheimer Calculations of Dipole Moments......Page 203
6.9 Nonadiabatic Calculations of Dipole Moments......Page 204
6.10 Molecule-Fixed Coordinate System......Page 210
6.11 Perturbation Theory for the Stark Shift......Page 213
6.12 Conclusions......Page 214
References......Page 215
7.1 Introduction......Page 219
7.2 Experimental Attempts......Page 223
7.2.1 Vibration–Rotation Spectroscopy......Page 224
7.2.2 M€ossbauer Spectroscopy......Page 225
7.2.3 NMR Spectroscopy......Page 226
7.2.5 Other Experiments......Page 227
7.3 Theoretical Predictions......Page 229
7.4 Conclusions......Page 233
References......Page 234
8.1 Introduction......Page 241
8.2 Time-Correlation Function Theory......Page 242
8.3 Direct Time-Domain Calculation with QM/MM MD Simulation Methods......Page 245
8.4.1 Conventional Differential Measurement Method......Page 249
8.4.2.1 Cross-Polarization Detection Configuration......Page 250
8.4.2.2 Fourier Transform Spectral Interferometry......Page 252
8.4.2.3 Vibrational OA-FID Measurement......Page 255
8.5 Summary and a Few Concluding Remarks......Page 256
References......Page 257
9.1 Introduction......Page 259
9.2 Molecular Anatomy......Page 261
9.3 Conformational Manifolds and Molecular Structure......Page 264
9.4 Hybrid Approaches......Page 265
9.4.1 Coupled Oscillators and the DeVoe Method......Page 266
9.4.2 The Matrix Method......Page 269
9.4.3 Applications......Page 270
9.5 The QM Approach......Page 274
9.5.1 Assignments of Absolute Configurations......Page 279
9.5.1.1 The Solid-State ECD TDDFT Method......Page 284
9.5.2 Interpretations of ECD Spectra......Page 286
9.5.3 Other Applications......Page 288
9.6 Conclusions and Perspectives......Page 289
References......Page 290
10.1.1 Dielectric Field Equation......Page 297
10.1.2 Molecular Resolution of the Total Collective Dipole Moment......Page 300
10.1.3 Computing the Generalized Dielectric Constant in Equilibrium......Page 304
10.1.4 Finite System Electrostatics......Page 312
10.2 Applications and Experiments......Page 317
10.2.1 Solvated Biomolecules......Page 321
10.2.1.1 Peptides......Page 322
10.2.1.2 Proteins......Page 323
10.2.1.3 DNA......Page 327
10.2.1.4 Biological Cells......Page 328
10.2.2 Molecular Ionic Liquids......Page 329
10.2.2.1 Conductivity and Dielectric Conductivity......Page 330
10.2.2.2 Dielectric Permittivity......Page 332
10.2.2.3 Generalized Dielectric Constant......Page 333
10.3 Summary and Outlook......Page 335
References......Page 336
11.1.1.1 Speciation......Page 341
11.1.1.2 Surface Reactions......Page 342
11.1.2.1 IR/Raman......Page 343
11.1.2.2 NMR......Page 346
11.1.2.3 EXAFS + CTR + XSW......Page 347
11.1.2.4 QENS and INS......Page 348
11.2.1 Model Building......Page 349
11.2.2 Selecting a Methodology......Page 351
11.3.1 IR/Raman Phosphate on Goethite......Page 352
11.3.2 Solution-State NMR of Al–Organic Complexes......Page 355
11.3.3 Solid-State NMR of Phosphate Binding on Alumina......Page 357
11.3.5 Water and Zn(II) on TiO2......Page 359
11.3.6 Water Dynamics on TiO2 and SnO2......Page 361
11.4 Summary and Future......Page 363
References......Page 364
12.2 Experimental and Theoretical Methods......Page 371
12.2.1 The LiO2 Ionic Molecule......Page 372
12.3 Aluminum and Hydrogen: First Preparation of Dibridged Dialane, Al2H6......Page 374
12.4 Titanium and Boron Trifluoride Give the Borylene FB=TiF2......Page 377
12.5 Ti and CH3F Form the Agostic Methylidene Product CH2=TiHF......Page 378
12.6 Zr and CH4 Form the Agostic Methylidene Product CH2=ZrH2......Page 380
12.7 Mo and CHCl3 Form the Methylidyne CH≡MoCl3......Page 382
12.8 Tungsten and Hydrogen Produce the WH4(H2)4 Supercomplex......Page 384
12.9 Pt and CCl4 Form the Carbene CCl2=PtCl2......Page 385
12.11 U and CHF3 Produce the Methylidyne CH≡UF3......Page 389
References......Page 392
13.1 The Giants. Shoulders......Page 395
13.2 The First Spectroscopists and Seeds of Quantum Theory......Page 397
13.3.1 CH, CN, CO, CO+þ......Page 401
13.3.2 Dicarbon: C2......Page 403
13.3.3 The Carbon Trimer: C3......Page 405
13.3.4 Radioastronomy......Page 407
13.4 The Diffuse Interstellar Bands......Page 408
13.5 The Red Rectangle, HD44179......Page 410
13.7 The Holy Grail......Page 412
References......Page 413
Index......Page 417