Computational Plasticity in Powder Forming Processes

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The powder forming process is an extremely effective method of manufacturing structural metal components with high-dimensional accuracy on a mass production basis. The process is applicable to nearly all industry sectors. It offers competitive engineering solutions in terms of technical performance and manufacturing costs. For these reasons, powder metallurgy is developing faster than other metal forming technology. Computational Plasticity in Powder Forming Proceses takes a specific look at the application of computer-aided engineering in modern powder forming technologies, with particular attention given to the Finite Element Method (FEM). FEM analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically. * Describes the mechanical behavior of powder materials using classical and modern constitutive theories. * Devoted to the application of adaptive FEM strategy in the analysis of powder forming processes. * 2D and 3D numerical modeling of powder forming processes are presented, using advanced plasticity models.

Author(s): Amir Khoei
Edition: 1st ed
Publisher: Elsevier
Year: 2005

Language: English
Commentary: 72744
Pages: 483
City: Amsterdam; London

Front Cover......Page 1
Computational Plasticity in Powder Forming Processes......Page 4
Copyright Page......Page 5
Contents......Page 8
Preface......Page 12
1.1. Metal forming processes......Page 14
1.2. Design of forming processes......Page 17
1.3. Finite element analysis in metal forming......Page 19
1.4. Powder compaction processes......Page 20
1.5. Powder metallurgy technology......Page 21
1.6. Mechanical behavior of powder......Page 22
1.7. Numerical simulation of powder forming processes......Page 24
2.1. Introduction......Page 32
2.2. Governing equations for powder forming analysis......Page 34
2.3. Lagrangian formulation......Page 35
2.4. Finite element discretization......Page 39
2.5. Time domain discretization......Page 42
2.6. Nonlinear iterative strategy......Page 45
2.7. Arbitrary Lagrangian-Eulerian method......Page 48
2.8. ALE governing equations......Page 50
3.1. Introduction......Page 57
3.2. Generalized plasticity......Page 60
3.3. Plasticity models for porous materials......Page 64
3.4. Plasticity models for granular materials......Page 65
3.5. Plasticity models for powder materials......Page 68
3.6. MCEC plasticity model......Page 73
3.7. Double-surface plasticity model......Page 76
3.8. The three-invariant single plasticity model......Page 80
3.9. Integration of the constitutive relation......Page 83
4.1. Introdution......Page 114
4.2. Physical aspects of friction......Page 115
4.3. Plasticity theory of friction......Page 117
4.4. Modeling of friction......Page 123
4.5. Continuum model of friction......Page 124
4.6. Interface element formulation......Page 128
5.1. Introduction......Page 141
5.2. Experimental investigation......Page 142
5.3. Parameter determination......Page 144
5.4. Application of MCEC plasticity model......Page 146
5.5. Application of three-invariant single plasticity model......Page 151
6.1. Introduction......Page 188
6.2. Adaptive FEM strategy......Page 190
6.3. Error estimation......Page 191
6.4. Adaptive mesh refinement......Page 193
6.5. Adaptive mesh generator......Page 195
6.6. Mapping of variables......Page 196
6.7. Error estimates and adaptive time stepping......Page 201
6.8. Numerical simulation results......Page 204
7.1. Introduction......Page 223
7.2. Endochronic plasticity theory......Page 224
7.3. Endochronic theory of plastic deviatoric deformation......Page 225
7.4. Endochronic theory of plastic volumetric deformation......Page 227
7.5. Endochronic theory of plastic volumetric and plastic deviatoric deformations......Page 230
7.6. Endochronic theory of visco-plasticity......Page 236
7.7. Multi-surface plasticity theory......Page 237
7.8. Multi-surface theory of J2 plasticity......Page 239
7.9. Multi-surface theory of pressure-dependent plasticity......Page 247
8.1. Introduction......Page 259
8.2. Finite deformation of endochronic plasticity......Page 261
8.3. Numerical integration of hypoelasto-plastic equations......Page 263
8.4. Finite deformation of endochronic visco-plasticity......Page 269
8.5. Numerical examples of finite elasto- and visco-plasticity......Page 272
8.6. Finite torsion of thin-walled tubes......Page 275
9.1. Introduction......Page 307
9.2. Application of endochronic plasticity......Page 309
9.3. Application of double-surface plasticity......Page 317
9.4. Application of three-invariant single-cap plasticity......Page 319
10.1. Introduction......Page 371
10.2. Causes of localization in solid mechanics......Page 373
10.3. Governing equations of incompressible plasticity......Page 374
10.4. Theory of Cosserat continuum......Page 377
10.5. Adaptive strategy for discontinuous displacements......Page 381
10.6. Numerical simulation results......Page 384
11.1. Introduction......Page 416
11.2. Overview of the software environment......Page 418
11.3. Pre-processing–Mesh generation......Page 420
11.4. The analysis utility environment......Page 421
11.5. Post-processing......Page 422
References......Page 430
Author Index......Page 449
Subject Index......Page 455
Color Plate Section......Page 464