Computational Noncommutative Algebra and Applications: Proceedings of the NATO Advanced Study Institute, on Computatoinal Noncommutative Algebra and ... II: Mathematics, Physics and Chemistry)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The fusion of algebra, analysis and geometry, and their application to real world problems, have been dominant themes underlying mathematics for over a century. Geometric algebras, introduced and classified by Clifford in the late 19th century, have played a prominent role in this effort, as seen in the mathematical work of Cartan, Brauer, Weyl, Chevelley, Atiyah, and Bott, and in applications to physics in the work of Pauli, Dirac and others. One of the most important applications of geometric algebras to geometry is to the representation of groups of Euclidean and Minkowski rotations. This aspect and its direct relation to robotics and vision will be discussed in several chapters of this multi-authored textbook, which resulted from the ASI meeting.

Moreover, group theory, beginning with the work of Burnside, Frobenius and Schur, has been influenced by even more general problems. As a result, general group actions have provided the setting for powerful methods within group theory and for the use of groups in applications to physics, chemistry, molecular biology, and signal processing. These aspects, too, will be covered in detail.

With the rapidly growing importance of, and ever expanding conceptual and computational demands on signal and image processing in remote sensing, computer vision, medical image processing, and biological signal processing, and on neural and quantum computing, geometric algebras, and computational group harmonic analysis, the topics of the book have emerged as key tools. The list of authors includes many of the world's leading experts in the development of new algebraic modeling and signal representation methodologies, novel Fourier-based and geometric transforms, and computational algorithms required for realizing the potential of these new application fields.

Author(s): Jim Byrnes, Gerald Ostheimer
Series: NATO Science Series. Series II, Mathematics, Physics, and Chemistry 136
Edition: 1
Publisher: Springer
Year: 2004

Language: English
Pages: 444

Contents......Page 8
Preface......Page 14
Acknowledgments......Page 17
Clifford Geometric Algebras in Multilinear Algebra and Non-Euclidean Geometries......Page 18
1 Geometric algebra......Page 19
2 Projective Geometries......Page 28
3 Affine and other geometries......Page 34
4 Affine Geometry of pseudo-euclidean space......Page 36
5 Conformal Geometry and the Horosphere......Page 38
References......Page 44
1 Introduction......Page 46
2 Motivating Examples......Page 49
3 General Concept......Page 56
4 Fault Tolerance......Page 62
5 Applications, Prototypes, and Test Results......Page 65
6 Related Work and Future Research......Page 68
References......Page 71
1 Introduction......Page 74
2 Radar Fundamentals......Page 75
3 Radar Waveforms......Page 77
4 Signal Processing......Page 80
5 Space-Time Adaptive Processing......Page 84
6 Four Problems in Radar......Page 88
7 Conclusions......Page 89
Introduction to Generalized Classical and Quantum Signal and System Theories on Groups and Hypergroups......Page 92
1 Generalized classical signal/system theory on hypergroups......Page 94
2 Generalized quantum signal/system theory on hypergroups......Page 108
References......Page 116
Lie Groups and Lie Algebras in Robotics......Page 118
1 Introduction—Rigid Body Motions......Page 119
2 Lie Groups......Page 121
3 Finite Screw Motions......Page 123
4 Mechanical Joints......Page 125
5 Invisible Motion and Gripping......Page 127
6 Forward Kinematics......Page 128
7 Lie Algebra......Page 129
8 The Adjoint Representation......Page 130
9 The Exponential Map......Page 132
10 Derivatives of Exponentials......Page 136
11 Jacobians......Page 139
12 Concluding Remarks......Page 141
References......Page 142
1 Introduction......Page 144
2 Paravector Space as Spacetime......Page 145
3 Eigenspinors......Page 146
4 Spin......Page 149
5 Dirac Equation......Page 154
6 Bell’s Theorem......Page 162
7 Qubits and Entanglement......Page 163
8 Conclusions......Page 170
References......Page 171
PONS, Reed-Muller Codes, and Group Algebras......Page 172
2 Analytic theory of one-dimensional PONS......Page 173
3 Shapiro sequences, Reed-Muller codes, and functional equations......Page 182
4 Group Algebras......Page 191
5 Reformulation of classical PONS......Page 195
6 Group Algebra of Classical PONS......Page 196
7 Group Algebra Convolution......Page 199
8 Splitting Sequences......Page 205
References......Page 212
1 Introduction......Page 214
2 Clifford algebras as models of physical spaces......Page 217
3 Clifford Algebras as Models of Perceptual Multicolor Spaces......Page 222
4 Hypercomplex-valued invariants of nD multicolor Spaces......Page 234
5 Conclusions......Page 240
References......Page 241
1 Introduction......Page 244
2 Finite group FFTs......Page 250
3 FFTs for compact groups......Page 261
4 Noncompact groups......Page 266
References......Page 268
Group Filters and Image Processing......Page 272
1 Introduction: Classical Digital Signal Processing......Page 273
2 Abelian Group DSP......Page 275
3 Nonabelian Groups......Page 282
4 Examples......Page 302
5 Group Transforms......Page 308
6 Group Filters......Page 312
7 Line-like Images......Page 321
References......Page 325
1 Introduction......Page 326
2 Local Analysis of Multi-dimensional Signals......Page 329
3 Knowledge Based Neural Computing......Page 341
References......Page 352
1 Introduction......Page 356
2 How a Radar Works......Page 358
3 Representations......Page 360
4 Representations and Radar......Page 364
5 Ambiguity Functions......Page 374
6 The Wide Band Case......Page 377
References......Page 379
Geometry of Paravector Space with Applications to Relativistic Physics......Page 380
1 Clifford Algebra in physics......Page 381
2 Paravector Space as Spacetime......Page 385
3 Interpretation......Page 392
4 Eigenspinors......Page 398
5 Maxwell’s Equation......Page 399
6 Conclusions......Page 403
References......Page 404
1 Introduction......Page 406
2 New construction of classical and multiparametric Prometheus transforms......Page 408
3 PONS associated with Abelian groups......Page 410
4 Fast Fourier-Prometheus Transforms......Page 414
Acknowledgments......Page 416
References......Page 417
1 Introduction......Page 418
2 Color images......Page 419
3 Color Wavelet-Haar-Prometheus transforms......Page 421
4 Edge detection and compression of color images......Page 423
5 conclusion......Page 425
References......Page 427
1 Transformations of Euclidean Space and Clifford Geometric Algebra......Page 430
References......Page 431
2 On the Distribution of Kloosterman Sums on Polynomials over Quaternions......Page 432
3 Harmonic Sliding Analysis Problems......Page 434
4 Spectral Analysis under Conditions of Uncertainty......Page 435
5 A Canonical Basis for Maximal Tori of the Reductive Centralizer of a Nilpotent Element......Page 436
6 The Quantum Chaos Conjecture......Page 438
References......Page 439
7 Four Problems in Radar......Page 440
I......Page 442
W......Page 443
Author Index......Page 444