Computational Invariant Theory

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This book is about the computational aspects of invariant theory. Of central interest is the question how the  invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Gröbner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision.

The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest.

More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi

r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.   

Author(s): Harm Derksen, Gregor Kemper
Series: Encyclopaedia of Mathematical Sciences
Edition: 2nd ed.
Publisher: Springer
Year: 2015

Language: English
Pages: 387
Tags: Topological Groups, Lie Groups; Algorithms

Front Matter....Pages i-xxii
Constructive Ideal Theory....Pages 1-30
Invariant Theory....Pages 31-70
Invariant Theory of Finite Groups....Pages 71-152
Invariant Theory of Infinite Groups....Pages 153-264
Applications of Invariant Theory....Pages 265-296
Back Matter....Pages 297-366