Author(s): Rudich, Steven, Wigderson A. (eds.)
Series: IAS Park City mathematics series. Institute for Advanced Study ; 10
Publisher: American Mathematical Society
Year: 2004
Language: English
Pages: 389
City: Providence, R.I
Tags: Co
Content: Week One: Complexity theory: From Godel to Feynman Complexity theory: From Godel to Feynman History and basic concepts Resources, reductions and P vs. NP Probabilistic and quantum computation Complexity classes Space complexity and circuit complexity Oracles and the polynomial time hierarchy Circuit lower bounds "Natural" proofs of lower bounds Bibliography Average case complexity Average case complexity Bibliography Exploring complexity through reductions Introduction PCP theorem and hardness of computing approximate solutions Which problems have strongly exponential complexity? Toda's theorem: $PH\subseteq P^{\ No. P}$ Bibliography Quantum computation Introduction Bipartite quantum systems Quantum circuits and Shor's factoring algorithm Bibliography Lower bounds: Circuit and communication complexity Communication complexity Lower bounds for probabilistic communication complexity Communication complexity and circuit depth Lower bound for directed $st$-connectivity Lower bound for $FORK$ (continued) Bibliography Proof complexity An introduction to proof complexity Lower bounds in proof complexity Automatizability and interpolation The restriction method Other research and open problems Bibliography Randomness in computation Pseudorandomness Preface Computational indistinguishability Pseudorandom generators Pseudorandom functions and concluding remarks Appendix Bibliography Pseudorandomness-Part II Introduction Deterministic simulation of randomized algorithms The Nisan-Wigderson generator Analysis of the Nisan-Wigderson generator Randomness extractors Bibliography Probabilistic proof systems-Part I Interactive proofs Zero-knowledge proofs Suggestions for further reading Bibliography Probabilistically checkable proofs Introduction to PCPs NP-hardness of PCS A couple of digressions Proof composition and the PCP theorem Bibliography.