This book provides a systematic introduction to the field of enzyme-catalyzed reactions. The content develops from monosubstrate to bisubstrate to trisubstrate reactions, concluding with nonhyperbolic rate equations and allosteric and cooperative effects. Because it outlines the subject in such a way that it builds from less complicated to more demanding kinetic models, it can be used as a textbook for students of biochemistry and molecular biology. The author stresses the importance of graphical representation of kinetic models by frequent use of such mathematical models in the form of double-reciprocal plots. In addition, special attention is paid to isotope exchange studies, kinetic isotope effects, and the statistical evaluation of initial rate and ligand binding data.
Author(s): Vladimir Leskovac
Edition: 1
Publisher: Springer
Year: 2003
Language: English
Pages: 451
Contents......Page 8
1.1 Enzyme Structure......Page 14
1.2 The Active Site......Page 19
2.1 Molecularity and Order of Reaction......Page 24
2.3 Determination of Rate Constants......Page 27
2.4 Reversible Reactions......Page 29
2.5 Consecutive Reactions......Page 31
2.6 Influence of Temperature on Rate Constants......Page 32
2.7 Properties of Water......Page 36
2.8 Ionization of Acids......Page 37
2.9 Dimensions and Dimensional Analysis......Page 41
3.1 Work of Michaelis and Menten......Page 44
3.2 Steady-State Approximation......Page 47
3.3 Reversible Mechanism with One Central Complex......Page 49
3.4 Reversible Mechanism with Two Central Complexes......Page 50
3.5 Equilibrium Constant and the Haldane Relationship......Page 52
3.7 Enzyme Distribution Equations......Page 53
3.8 Hyperbolic Nature of the Michaelis–Menten Equation......Page 54
3.9 Significance of Kinetic Parameters......Page 55
3.10 Graphical Presentation of Data......Page 58
3.11 Dimensional Analysis......Page 61
4.1 Velocity Equations for Rapid Equilibrium Systems......Page 64
4.2 Net Rate Constant Method......Page 65
4.3 Method of King and Altman......Page 68
4.4 The Method of Cha......Page 78
4.5 The Systematic Approach......Page 80
4.6 Comparison of Different Methods......Page 82
5.1 Classification of Inhibitors......Page 86
5.2 Competitive Inhibition......Page 87
5.3 Noncompetitive Inhibition......Page 89
5.4 Uncompetitive Inhibition......Page 92
5.5 Characteristics of Linear Inhibition......Page 94
5.6 Dead-End Inhibition in Steady-State Bisubstrate Systems......Page 96
5.7 Inhibition by a Mixture of Two Inhibitors......Page 101
6.1 Hyperbolic Inhibition in Monosubstrate Reactions......Page 108
6.2 Determination of Kinetic Constants in Hyperbolic Inhibition......Page 111
6.3 Variations of Hyperbolic Inhibition in Monosubstrate Reactions......Page 112
6.4 Hyperbolic Inhibition in Bisubstrate Reactions......Page 115
6.5 Parabolic Inhibition in Monosubstrate Reactions......Page 118
6.6 Nomenclature of Double Reciprocal Plots in the Presence of Inhibitors......Page 121
7.1 Nonessential Activation......Page 124
7.2 Essential Activation......Page 127
8.1 Nomenclature......Page 130
8.2 Rapid Equilibrium Ordered System......Page 132
8.3 Rapid Equilibrium Random System......Page 135
8.4 Product Inhibition in a Rapid Equilibrium Ordered Bi Bi System......Page 137
8.5 Product Inhibition in a Rapid Equilibrium Random Bi Bi System......Page 141
8.6 Rapid Equilibrium Random Bi Bi System with a Dead-End EBQ Complex......Page 142
8.7 A Random Model with Two Dead-End Complexes......Page 147
8.8 Diagnostics of Rapid Equilibrium Systems......Page 148
9.1 Nomenclature......Page 152
9.2 Ordered Bi Bi System......Page 154
9.3 Theorell–Chance Mechanism......Page 168
9.4 Ordered Uni Bi and Ordered Bi Uni Systems......Page 170
9.5 Ping Pong Bi Bi Mechanism......Page 173
9.6 Steady-State Random Bi Uni Mechanism......Page 179
9.7 Isomerization of Transitory Complexes and Stable Enzyme Forms......Page 181
10. Kinetic Analysis of Bisubstrate Mechanisms......Page 184
10.1 Prediction of Initial Velocity Patterns......Page 185
10.2 Product Inhibition......Page 190
10.3 Analysis of Intersection Points......Page 192
10.4 Special Relationships between the Constants......Page 194
10.5 Complex Bisubstrate Mechanisms with a Central Ternary Complex......Page 196
10.6 Complex Ping Pong Mechanisms......Page 199
10.7 Examples of Enzyme Bisubstrate Mechanisms......Page 200
11.1 Rational Polynomials......Page 204
11.2 Substrate Inhibition......Page 205
11.4 Mixed Dead-End and Product Inhibition......Page 215
11.5 Summary of Inhibition Types......Page 218
12.1 Prediction of Reaction Sequences in Trisubstrate Mechanisms......Page 222
12.2 Rate Equations in the Absence of Products......Page 229
12.3 Full Rate Equations for Ter Bi Systems......Page 235
12.4 Full Rate Equations for Ter Ter Systems......Page 240
12.5 Product Inhibition in Trisubstrate Mechanisms......Page 250
12.6 Examples of Enzyme Trisubstrate Mechanisms......Page 253
13.1 Cooperative Versus Allosteric Effects......Page 256
13.2 Noncooperative Binding......Page 260
13.3 Positive Cooperativity......Page 263
13.4 Negative Cooperativity......Page 269
13.5 Monod, Wyman, and Changeux Model (MWC Model)......Page 270
13.6 Application of the MWC Model to Enzymes......Page 274
13.7 Koshland, Nemethy, and Filmer Models (KNF Models)......Page 284
13.8 Comparison of Various Models......Page 291
14.1 Introduction......Page 296
14.2 Dissociation of Dibasic Acids......Page 297
14.3 Effects of pH on Kinetics of Monosubstrate Reactions......Page 299
14.4 Effects of pH on Kinetics of Bisubstrate Reactions......Page 308
14.5 pH Profiles......Page 312
14.6 Interpretation of pH Profiles......Page 317
14.7 Summary of Procedures to Follow the pH Studies......Page 325
15.1 Free Energy Profiles......Page 330
15.2 Separation and Estimation of Rate Constants......Page 334
15.3 Heat of lonization of Amino Acid Side Chains in Enzymes......Page 336
15.4 Solvent Perturbation......Page 339
16.1 Principles of Isotope Exchange......Page 342
16.2 Isotopic Exchange at Chemical Equilibrium in Sequential Mechanisms......Page 343
16.3 Specific Examples of Sequential Mechanisms......Page 355
16.4 Sequential Mechanisms away from Equilibrium......Page 357
16.5 Isotopic Exchange in Ping Pong Mechanisms......Page 358
16.6 Abortive Complex Formation......Page 363
17.1 Origin of Isotope Effects......Page 366
17.2 Tritium versus Deuterium Kinetic Isotope Effects......Page 371
17.3 Kinetic Isotope Effects on V[sub(max)] and V[sub(max)]/K[sub(M)] in Enzymatic Reactions......Page 372
17.4 Determination of Kinetic Isotone Effects......Page 382
17.5 Kinetic Mechanism from the Variation of Substrates and Products......Page 388
17.6 Kinetic Mechanism from the Variation of Kinetic Isotope Effects with pH......Page 391
17.7 Isotope Trapping......Page 395
17.8 Heavy-Atom Kinetic Isotope Effects......Page 396
17.9 Secondary Isotope Effects......Page 397
17.10 Solvent Isotope Effects......Page 398
18.1 Statistics......Page 404
18.2 Analysis of Initial Rate Data......Page 412
18.3 Model Discrimination......Page 424
18.4 Integrated Michaelis–Menten Equation......Page 426
B......Page 434
D......Page 435
E......Page 438
H......Page 439
I......Page 440
K......Page 441
L......Page 442
N......Page 443
O......Page 444
P......Page 445
R......Page 446
S......Page 447
V......Page 450
Z......Page 451