Comprehensive Coordination Chemistry II. From the Molecular to the Nanoscale: Synthesis, Structure, and Properties

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Author Unknown
Publisher: Elsevier Science
Year: 2004

Language: English
Pages: 10

Cover Page......Page 1
Introduction to Volume 7......Page 2
COMPREHENSIVE COORDINATION CHEMISTRY II......Page 10
Volumes......Page 11
Info on Volume 7......Page 12
7.1 High Nuclearity Clusters: Iso and Heteropolyoxoanions and Relatives......Page 13
Fundamental Units and Building Blocks......Page 14
Basic Principles in Polyoxometalate Cluster Synthesis......Page 15
Vanadates......Page 16
{V12} Clusters......Page 17
{V14} and {V15} Clusters......Page 20
{V18}, { V22}, {V34} Clusters-Clusters Shaped by Encapsulated Templates......Page 22
Tungstates......Page 27
{XW11}2{Mo3S4}2......Page 30
{X2W21}......Page 31
{XW9}1:{Eu3SbW24}......Page 33
{XW9}3......Page 34
{P5W30}......Page 36
Molybdates......Page 38
From {Mo36} to {Mo57} Clusters-Two and Three Fragment Clusters Based on {Mo17} Units......Page 39
{Mo154} Big Wheel Clusters......Page 40
Construction of {Mo154}-type clusters......Page 41
Formation of structural defects......Page 42
Formation of host guest systems......Page 44
Structural modifications of the big wheel clusters......Page 48
Comparison between the {Mo154} and {Mo176} big wheel clusters......Page 49
Nucleation processes within a cluster cavity-from a {Mo176} to a {Mo248} cluster......Page 50
Surface ligand exchange on the big wheel clusters......Page 51
Synthesis of the big wheel clusters with EuIII salts......Page 52
{Mo132} Big Ball Keplerate Clusters......Page 54
Building block scheme for the Keplerate clusters......Page 55
Changing the bridging ligands in the Keplerate clusters......Page 56
From {Mo132} to {Mo72M30} spherical clusters (M=Fe, Mo)......Page 57
Formation of molecular barrels {Mo75V20}......Page 58
Formation of solid-state structures with {Mo72Fe30}......Page 59
Molecular hostages and networks of molecular hostages......Page 60
{Mo368} Clusters: a Hybrid Between Wheel- and Ball-shaped clusters......Page 61
Building Block Principles......Page 63
Outlook......Page 64
References......Page 65
7.2 High Nuclearity Clusters: Metal-Chalcogenide Polynuclear Complexes......Page 69
Association of metal cations and chalcogenide or chalcogenolate anions(I)......Page 70
Phosphine chalcogenides as a source of E (III)......Page 71
Insertion of chalcogen into M&z.sbnd;R bonds (IV)......Page 72
Silylated chalcogenide and chalcogenolate reagents (V)......Page 73
Nucleophilic metal chalcogenide complexes (VI)......Page 74
Additional methods (IX)......Page 75
Solid-State and Solvothermal Approaches (X)......Page 76
Chalcogenide ligands......Page 77
Di- and polychalcogenide ligands......Page 78
Octahedral rhenium chalcogenide clusters......Page 79
Group 11 metal-chalcogenolate clusters......Page 80
Group 11 metal-chalcogenide clusters......Page 81
Group 12 metal-chalcogenolate clusters......Page 82
Cubane-like Clusters......Page 83
Clusters with Octahedral M6E8 Cores......Page 84
Iron-Chalcogen Clusters Based on Fe2E2 Rhombs......Page 86
Clusters with Structures Based on Adamantane or Barrelene Cages and Related Fragments......Page 90
Clusters from Silylated Chalcogen Reagents......Page 93
Early transition metal-chalcogenide clusters......Page 95
Group 10 metal clusters......Page 96
Group 11 metal clusters......Page 98
Group 12 metal clusters......Page 106
Clusters from E=PR3......Page 107
Ternary M/coinage clusters......Page 109
Related main group ligands......Page 114
Clusters Synthesized from Polychalcogenide Reagents......Page 116
Chalcogen-bridged Clusters of the f-block Elements......Page 118
Copper Selenide and Silver Selenide "Megaclusters"......Page 121
Quantum Confinement Effects......Page 123
The Photophysical Properties of II-VI Nanoclusters......Page 124
References......Page 126
Explanation and Apology......Page 136
Serendipitous Assembly......Page 137
Survey of the 3d Metals......Page 138
Alkoxides......Page 139
Phosphonates and arsonates......Page 141
Other ligands......Page 142
Chromium......Page 143
Manganese......Page 145
Iron......Page 156
Cobalt......Page 162
Nickel......Page 167
Copper......Page 171
Wheels and Metallocrowns......Page 177
Planar Cages Based on Cadmium Iodide Cores......Page 179
Conclusion......Page 180
References......Page 182
7.4 High Nuclearity Clusters: Clusters and Aggregates with Paramagnetic Centers: Cyano and Oxalato bridged Systems......Page 187
Introduction to Molecular Magnetism......Page 188
Transition Metal Cyanide Chemistry......Page 189
Prussian Blue......Page 190
Prussian Blue Analogues......Page 191
Photomagnetism......Page 192
One-dimensional compounds......Page 194
Two-dimensional compounds......Page 195
Three-dimensional compounds......Page 199
Single-molecule Magnets......Page 203
Heptacyanometalate Building Blocks......Page 207
High-spin clusters......Page 211
One-dimensional compounds......Page 215
Two-dimensional compounds......Page 219
Three-dimensional networks......Page 220
Dicyanometalates......Page 223
Basic Principles of Specific Two- and Three-dimensional Network Configurations......Page 224
Structural Studies on Two-dimensional Compounds......Page 227
Magnetic Studies on Two-dimensional Compounds......Page 228
Structural Studies on Three-dimensional Compounds......Page 229
Enantioselective Synthesis of Oxalate-Based Magnets......Page 232
Utilizing the Spin Crossover Phenomenon: From Rational Design to Functional Molecular Materials......Page 233
Structural Changes in Oxalate-based Spin Crossover Systems......Page 234
Working Towards the Design of Dual Action Materials......Page 235
References......Page 236
Structure......Page 240
Lanthanide ions as connectors......Page 241
Metal clusters and polynuclear complexes as connectors......Page 242
Mononuclear metal complexes as connectors......Page 243
Inorganic ligands as linkers......Page 245
Organic ligands as linkers......Page 246
Metalloligands as linkers......Page 248
Counteranions as linkers......Page 251
Solvent molecules as templates......Page 252
Three-dimensional structures......Page 253
Porous Function......Page 254
Toward Coordination Polymer Magnets......Page 259
Chromism......Page 262
Redox Properties......Page 263
Usual Diffusion Method......Page 264
References......Page 265
Introduction and Scope......Page 271
Metallostars or Metallodendrimers......Page 272
Sites of Metal Incorporation......Page 273
Synthetic Strategies......Page 274
Metallostars Based Upon bpy and phen Domains......Page 275
Metallostars Based Upon tpy Domains......Page 287
Metallostars Based Upon Other Domains......Page 290
Metallodendrimers Based Upon bpy and phen Domains......Page 292
Metallodendrimers Based Upon tpy Domains......Page 296
Metallodendrimers and Metallostars Based Upon Other Domains......Page 297
Surface Decoration......Page 299
Metal Cores Decorated with Dendritic Wedges......Page 301
References......Page 305
Introduction......Page 311
Templated Syntheses of [2]Catenanes......Page 312
1H NMR and Mass Spectrometries of Metal-free Catenane (1) and Copper [2]Catenane Cu(1)+......Page 314
X-ray Structures of [2]Catenanes......Page 315
[3]Catenanes and Molecular Necklaces......Page 318
The Eight-reacting-centers Approach......Page 319
The Four-reacting-centers Approach......Page 320
[2]Catenanes Obtained by Ring-Closing Metathesis (RCM)......Page 322
Synthesis of Interlocking Rings Using Two Different Transition Metals as Templating and Connecting Centers: Rucu(20.4)3+, Ruz......Page 326
Template Synthesis of a 5-Coordinate Zinc(II) Catenane, The Corresponding Catenand, and Related Copper(II) and Iron(II) Compl......Page 327
Conclusion......Page 330
References......Page 333
Introduction......Page 335
Metal-Ligand Self-Assembly......Page 336
Coordination Assemblies......Page 337
Assemblies with Two- and Three-coordinate Metal Ions......Page 338
Assemblies with Four-coordinate Square-Planar Metal Ions......Page 340
Assemblies with Four-coordinate Tetrahedral Metal Ions......Page 346
Assemblies with Five-coordinate Metal Ions......Page 348
Assemblies with Six-coordinate Octahedral Metal Ions......Page 349
Assemblies with Higher Coordination Number (6) Metal Ions......Page 354
Properties of Coordination Supramolecular Assemblies......Page 356
Function of Coordination Supramolecular Assemblies......Page 358
References......Page 359
7.9 Metallomesogens......Page 364
General Introduction......Page 366
Calamitic Mesogens......Page 367
Mesophases of Calamitic Mesogens......Page 368
The nematic phase......Page 369
The true smectic phases......Page 370
The crystal smectic phases......Page 371
Discotic Mesogens......Page 372
Lyotropic Liquid Crystals......Page 373
Mesophase Characterization......Page 376
Polarized Optical Microscopy......Page 377
Differential Scanning Calorimetry (DSC)......Page 378
Small-angle X-ray Diffraction......Page 379
Phthalocyanines......Page 381
Peripherally octasubstituted phthalocyanines......Page 382
Phthalocyanines with extended cores......Page 390
Bis(phthalocyaninato)lanthanide complexes......Page 393
Radially substituted phthalocyanines......Page 396
Tetrapyrazinoporphyrazines......Page 401
-Octasubstituted metalloporphyrins......Page 404
Meso-tetrasubstituted metalloporphyrins......Page 407
Lanthanide complexes of porphyrins......Page 411
Tetrabenzoporphyrins......Page 412
Tetraazaporphyrins......Page 414
Triazolehemiporphyrazine and Triazolephthalocyanine Complexes......Page 416
Tetraaza[14]annulenes......Page 417
Tetraaza[14]cyclohexadecanes......Page 418
Metallacrown Complexes......Page 419
Macroheterocyclic Tetrametallo-organyls......Page 421
Paracyclophanes......Page 424
Metal Complexes of Azacrowns......Page 425
Calix[4]arenes......Page 427
Carboxylates of Alkali Metals and Monovalent Metals......Page 428
Bis[1-(substituted-biphenyl)-3-substituted--diketonato]metal complexes with two and four peripheral chains......Page 429
Complexes with four peripheral chains......Page 433
Complexes with eight peripheral chains......Page 436
Complexes with ten and twelve peripheral chains......Page 438
Complexes with six peripheral chains......Page 440
Mono-, tris-, and tetrakis-[1,3-substituted-phenyl--diketonato] metal complexes......Page 442
Mixed Phenylpyrimidine-1,3-(Substituted-Phenyl)-b-diketonato)MetalComplexes......Page 446
Triketonato and Tetraketonato Metal Complexes......Page 447
Dithiolene Complexes......Page 452
1,2-Dioxime Complexes......Page 453
Dithiooxamide Complexes......Page 457
Hydrazine Complexes......Page 458
Benzalimines......Page 459
Iminoketones......Page 460
Metal Complexes Containing Triphenylene Units......Page 466
Alkali-earth and Divalent Metal Carboxylates......Page 471
Tetra(alkanoato)dicopper.2 mesogens......Page 473
Other tetraalkanoatedimetal complexes......Page 476
Tetra(benzoato)dimetal complexes......Page 479
Lanthanide carboxylates......Page 482
Introduction......Page 484
Simple Systems......Page 487
Complexes of group 10 metals......Page 489
Complexes of silver.1......Page 493
Lyotropic mesomorphism of polycatenar complexes of silver.1......Page 495
Systems Based on Other Types of Poly(alkoxy)substituted Ligands......Page 496
Polycatenar Organometallic Complexes......Page 497
Polycatenar Porphyrins......Page 499
Salen Complexes......Page 501
Other Polycatenar Metallomesogens......Page 503
Wedge-shaped Complexes......Page 507
Metallodendrimers......Page 509
Miscellaneous......Page 513
Introduction......Page 515
Alkylammonium derivatives......Page 516
Complexes of long-chain amines......Page 517
Pyridinium and imidazolium salts......Page 518
Thiolates......Page 520
Complexes of organophenylenes......Page 521
Palladium and platinum......Page 522
Gold and silver......Page 523
Mixed isonitrile–acetylide complexes......Page 524
Halogold(I) isocyanide complexes......Page 525
Mixed phenylene–isonitrile gold complexes......Page 527
Acetylide complexes......Page 529
Carbene complexes......Page 530
Rhodium and iridium complexes......Page 532
Palladium and platinum complexes......Page 534
Silver complexes......Page 535
Pyrazole complexes......Page 538
Physical Properties of Complexes of Monodentate Ligands......Page 539
Dithiobenzoate complexes......Page 540
Nickel and palladium dithiobenzoates......Page 541
Dithiocarbamate complexes......Page 542
Physical properties of mesogens with bidentate sulfur ligands......Page 543
Complexes ialpha-substituted- beta-dialdehydes and alpha-substituted- beta-diketones......Page 544
Salicylaldehyde derivatives......Page 545
Complexes of bipyridine ligands......Page 546
Complexes with N,O donor sets......Page 548
N,N`-Disalicylidenealkylenediamine complexes......Page 566
Bis(enaminoketonato) complexes......Page 567
Other complexes with N,O donor sets......Page 569
Complexes with N,N` donor sets......Page 571
Ortho-metallated azo complexes......Page 572
Ortho-metallated azoxy complexes......Page 577
Ortho-metallated imine complexes......Page 578
Ortho-palladated azine complexes......Page 586
Ortho-metallated pyrimidine complexes......Page 587
Other ortho-metallated complexes......Page 588
O-bridged enaminoketonato complexes......Page 590
Tricarbonyliron(0) derivatives......Page 591
Monosubstituted ferrocenes......Page 592
Disubstituted liquid-crystalline ferrocenes......Page 594
Trisubstituted ferrocenes......Page 595
Ferrocenophanes......Page 596
Influence of the ferrocene unit on thermal and mesomorphic properties......Page 597
Optically active systems......Page 598
Ferrocene-containing dendrimers......Page 600
Crown-ether Complexes......Page 601
Polymeric Systems......Page 605
Amphiphilic metal complexes......Page 607
Concluding remarks......Page 610
Columnar Systems......Page 611
Conclusions And Acknowledgments......Page 613
References......Page 614
Introduction......Page 635
Sol-Gel Processing of Metal Salts......Page 636
Hydrolysis......Page 637
Condensation......Page 638
Precipitation vs. Gelation......Page 640
Influence of the Counteranion......Page 641
Synthesis from metals and alcohols......Page 642
Synthesis from metal chlorides and alcohols or alcoholates......Page 643
Formation of heterometallic alkoxides......Page 644
Structures of Metal Alkoxides in Solution and the Solid State......Page 645
Sol-Gel Processing of Metal Alkoxides......Page 647
Metal oxo-alkoxides......Page 649
Organically Substituted Metal Alkoxides......Page 650
References......Page 653
7.11 Molecular Electron Transfer......Page 663
Overview......Page 664
Matters of Principle and Perspective......Page 666
The reorganizational energy associated with differences in molecular geometry, lambdaM......Page 667
Absorption and emission bandwidths......Page 668
General Logic for Discussion of Thermal and Optical Electron Transfer......Page 669
The Franck-Condon Factor......Page 673
The Electronic Factor......Page 674
Perturbation Theory Corrections for the Alteration of the Free Energy of Reaction Terms as a Consequence of D/A Configurational Mixing......Page 676
Corrections to the Reorganizational Energy Terms that Result from D/A Configurational Mixing......Page 677
The Temperature Dependence of Electron Transfer Rates......Page 678
Special Features of Covalently Linked D/A Complexes......Page 679
Observations in The Limit of Weak Electronic Coupling: Outer-Sphere Electron Transfer......Page 681
General Considerations: The Significance of kappael in Outer-sphere Electron Transfer Reactions of Transition Metal Complexes......Page 682
Observations on Cobalt(III)-(II) Systems......Page 683
Franck-Condon Factors......Page 689
Inner-sphere or molecular reorganizational contributions......Page 690
Gas-phase Solution-phase Comparisons......Page 693
Coupling to Vibrational Modes: Gated Electron Transfer and Vibronic Issues......Page 694
Electron transfer coupled to large-amplitude changes in low-frequency vibrationalmodes, intermediates, and gated electron transfer......Page 695
Overview and Summary......Page 698
Covalently Linked Dpi Donors and Acceptors......Page 699
Diatomic bridging moieties......Page 703
Some General Considerations Regarding Linked Donor-Acceptor Complexes when there is no Mixing of the Nuclear and Electronic Coordinates......Page 704
Time Frames for Electron Transfer......Page 705
The Mixing of the Nuclear and Electronic Coordinates in Linked Donor-Acceptor Complexes; Vibronic Coupling......Page 706
Classification Schemes for Bridged Complexes......Page 709
Experimental Observations in the Limit of Weak Electronic Coupling; Simple, Aromatic Bridging Ligands......Page 710
Electron Transfer Systems in the Intermediate Regime......Page 711
Experimental Observations in the Limit of Very Strong Electronic Coupling......Page 712
Pyrazine-bridged complexes......Page 713
Complexes with two-atom bridging moieties......Page 718
Covalently Linked, Sigma Donor-Acceptor Systems......Page 723
Electron Transfer in Larger-Scale Systems......Page 725
Systems Related to Biological Electron Transport......Page 726
Complexes Containing Multiple Donors and/or Acceptors......Page 727
References......Page 729
7.12 Electron Transfer from the Molecular to the Nanoscale......Page 737
Scope of Coordination Chemistry in Nanoscale Charge Transfer Systems......Page 738
Scope and Organization of this Chapter......Page 740
A Chemist's Perspective: A Molecular Orbital Approach......Page 741
Clusters from Atoms......Page 743
Classical Electrostatics for a Spherical Particle......Page 744
Adiabatic process......Page 746
Optical Excitation......Page 748
Metal Clusters......Page 750
Semiconductor Clusters......Page 753
Framework And Models......Page 755
Energy Scales and Absolute Potentials......Page 756
Relating Rate Constant and Conductance......Page 757
Electronic Coupling Mechanisms in Nanostructures and Distance Dependences......Page 759
Inner-shell barrier......Page 760
Dielectric spheres in a dielectric medium......Page 761
Two conducting spheres in different dielectric media......Page 762
One reactant embedded in a dielectric shell......Page 763
Model for a self-assembled monolayer......Page 764
Electron Transfer through Monolayers on Metal Electrodes......Page 765
Electron Transfer through Monolayers on Semiconductor Electrodes......Page 766
Electron Transfer in Metal-Molecule-Metal Systems......Page 767
Distance Dependence in Self-assembled Monolayers......Page 769
Kinetic Dispersity......Page 771
Solutions......Page 772
Films......Page 773
Carrier Hopping between Semiconductor Nanoparticles......Page 774
Polymers, Dendrimers......Page 776
Self-assembled Monolayers on Solids......Page 778
Porous Solids......Page 779
References......Page 780
Fundamental Aspects......Page 784
Magnetic Coupling......Page 785
Polarized Neutron Diffraction......Page 790
Oligonuclear Systems......Page 791
Mixed-valence Species......Page 792
Valence Tautomeric Species......Page 795
Antiferromagnetic Rings......Page 796
Single-molecule Magnets......Page 799
Haldane Gap Systems......Page 807
Azide-bridged One-dimensional Systems......Page 808
Metal nitroxide chains......Page 810
Oxalato Derivatives......Page 812
References......Page 814