Complexity classifications of Boolean constraint satisfaction problems

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Many fundamental combinatorial problems, arising in such diverse fields as artificial intelligence, logic, graph theory, and linear algebra, can be formulated as Boolean constraint satisfaction problems (CSP). This book is devoted to the study of the complexity of such problems. The authors' goal is to develop a framework for classifying the complexity of Boolean CSP in a uniform way. In doing so, they bring out common themes underlying many concepts and results in both algorithms and complexity theory. The results and techniques presented here show that Boolean CSP provide an excellent framework for discovering and formally validating "global" inferences about the nature of computation.

This book presents a novel and compact form of a compendium that classifies an infinite number of problems by using a rule-based approach. This enables practitioners to determine whether or not a given problem is known to be computationally intractable. It also provides a complete classification of all problems that arise in restricted versions of central complexity classes such as NP, NPO, NC, PSPACE, and #P.

Author(s): Nadia Creignou, Sanjeev Khanna, Madhu Sudan
Series: SIAM monographs on discrete mathematics and applications
Publisher: Society for Industrial and Applied Mathematics
Year: 1987

Language: English
Pages: 119
City: Philadelphia