Complex Analysis: An Invitation: A Concise Introduction to Complex Function Theory

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Murali Rao, Henrik Stetkaer
Publisher: World Scientific Publishing Company
Year: 1991

Language: English
Pages: 252
Tags: Математика;Комплексное исчисление;

Front Cover......Page 1
Title......Page 4
Copyright......Page 5
Preface......Page 6
Contents......Page 8
Section 1 Elementary facts ......Page 12
Section 2 The theorems of Abeland Tauber ......Page 15
Section 3 Liouville's theorem ......Page 18
Section 4 Important power series ......Page 19
Section 5 Exercises ......Page 20
Section 1 Basics of complex calculus ......Page 24
Section 2 Line integrals ......Page 28
Section 3 Exercises ......Page 33
Section 1 The exponential function ......Page 34
Section 2 Logarithm, argument and power ......Page 35
Section 3 Existence of continuous logarithms ......Page 39
Section 4 The winding number ......Page 42
Section 5 Square roots ......Page 46
Section 6 Exercises ......Page 48
Section 1 The Cauchy-Goursat integral theorem ......Page 54
Section 2 Selected consequences of the Cauchy integral formula ......Page 61
Section 3 The open mapping theorem ......Page 64
Section 4 gap theorem ......Page 69
Section 5 Exercises ......Page 71
Section 1 The global Cauchy integral theorem ......Page 82
Section 2 Simply connected sets ......Page 86
Section 3 Exercises ......Page 88
Section 1 Laurent series ......Page 90
Section 2 The classification of isolated singularities ......Page 93
Topic 1 The statement ......Page 95
Topic 2 Example A ......Page 96
Topic 3 Example B ......Page 98
Topic 4 Example C ......Page 100
Section 4 Exercises ......Page 103
Section 1 Liouville's and Casorati-Weiersuass' theorems ......Page 110
Section 2 Picard's two theorems ......Page 111
Section 3 Exercises ......Page 117
Section 4 Alternative treatment ......Page 119
Section 5 Exercises ......Page 123
Section 1 The Riemann sphere ......Page 124
Section 2 The Mobius transformations ......Page 126
Section 3 MonteL's theorem ......Page 131
Section 4 The Ricmann mapping theorem ......Page 133
Section 6 Exercises ......Page 136
Section 1 The argument principle ......Page 140
Section 2 Rouches theorem ......Page 142
Section 3 Runge's theorems ......Page 146
Section 4 The inhomogeneous Cauchy-Riemann equation ......Page 151
Section 5 Exercises ......Page 155
Section 1 Infinite products ......Page 158
Section 2 The Euler formula for sine ......Page 162
Section 3 factorization theorem ......Page 164
Section 4 The r-function ......Page 168
Section 5 The Mittag-Leffler expansion ......Page 172
Section 6 The g- and p-functions of Weierstrass ......Page 174
Section 1 The Riemann zeta function ......Page 180
Section 2 Euler's product formula and zeros of ? ......Page 184
Section 3 More about the zerosof ? ......Page 187
Section 4 The prime number theorem ......Page 188
Section 5 Exercises ......Page 192
Section 1 Holomorphic and harmonic functions ......Page 194
Section 2 Poisson's formula ......Page 198
Section 3 Jensen's formula ......Page 203
Section 4 Exercises ......Page 206
Section 1 Technical results on upper semicontinuous functions ......Page 210
Section 2 Introductory properties of subharmonic functions ......Page 212
Section 3 Onthesetwhereu=_oo ......Page 214
Section 4 Approximation by smooth functions ......Page 216
Section 5 Constructing subharmonic functions ......Page 219
Topic 1 Rado's theorem ......Page 221
Topic 2 Hardy spaces ......Page 222
Topic 3 F. and R. Nevanlinna's theorem ......Page 226
Section 7 Exercises ......Page 227
Section 1 The Phragmen-Lindelof principle ......Page 230
Section 2 The Riesz-Thorin interpolation theorem ......Page 232
Section 3 M. Riesz's theorem ......Page 234
Section 4 Exercises ......Page 240
References ......Page 242
Index ......Page 248
Back Cover......Page 252