Author(s): Murali Rao, Henrik Stetkaer
Publisher: World Scientific Publishing Company
Year: 1991
Language: English
Pages: 252
Front Cover......Page 1
Title......Page 4
Copyright......Page 5
Preface......Page 6
Contents......Page 8
Section 1 Elementary facts ......Page 12
Section 2 The theorems of Abeland Tauber ......Page 15
Section 3 Liouville's theorem ......Page 18
Section 4 Important power series ......Page 19
Section 5 Exercises ......Page 20
Section 1 Basics of complex calculus ......Page 24
Section 2 Line integrals ......Page 28
Section 3 Exercises ......Page 33
Section 1 The exponential function ......Page 34
Section 2 Logarithm, argument and power ......Page 35
Section 3 Existence of continuous logarithms ......Page 39
Section 4 The winding number ......Page 42
Section 5 Square roots ......Page 46
Section 6 Exercises ......Page 48
Section 1 The Cauchy-Goursat integral theorem ......Page 54
Section 2 Selected consequences of the Cauchy integral formula ......Page 61
Section 3 The open mapping theorem ......Page 64
Section 4 gap theorem ......Page 69
Section 5 Exercises ......Page 71
Section 1 The global Cauchy integral theorem ......Page 82
Section 2 Simply connected sets ......Page 86
Section 3 Exercises ......Page 88
Section 1 Laurent series ......Page 90
Section 2 The classification of isolated singularities ......Page 93
Topic 1 The statement ......Page 95
Topic 2 Example A ......Page 96
Topic 3 Example B ......Page 98
Topic 4 Example C ......Page 100
Section 4 Exercises ......Page 103
Section 1 Liouville's and Casorati-Weiersuass' theorems ......Page 110
Section 2 Picard's two theorems ......Page 111
Section 3 Exercises ......Page 117
Section 4 Alternative treatment ......Page 119
Section 5 Exercises ......Page 123
Section 1 The Riemann sphere ......Page 124
Section 2 The Mobius transformations ......Page 126
Section 3 MonteL's theorem ......Page 131
Section 4 The Ricmann mapping theorem ......Page 133
Section 6 Exercises ......Page 136
Section 1 The argument principle ......Page 140
Section 2 Rouches theorem ......Page 142
Section 3 Runge's theorems ......Page 146
Section 4 The inhomogeneous Cauchy-Riemann equation ......Page 151
Section 5 Exercises ......Page 155
Section 1 Infinite products ......Page 158
Section 2 The Euler formula for sine ......Page 162
Section 3 factorization theorem ......Page 164
Section 4 The r-function ......Page 168
Section 5 The Mittag-Leffler expansion ......Page 172
Section 6 The g- and p-functions of Weierstrass ......Page 174
Section 1 The Riemann zeta function ......Page 180
Section 2 Euler's product formula and zeros of ? ......Page 184
Section 3 More about the zerosof ? ......Page 187
Section 4 The prime number theorem ......Page 188
Section 5 Exercises ......Page 192
Section 1 Holomorphic and harmonic functions ......Page 194
Section 2 Poisson's formula ......Page 198
Section 3 Jensen's formula ......Page 203
Section 4 Exercises ......Page 206
Section 1 Technical results on upper semicontinuous functions ......Page 210
Section 2 Introductory properties of subharmonic functions ......Page 212
Section 3 Onthesetwhereu=_oo ......Page 214
Section 4 Approximation by smooth functions ......Page 216
Section 5 Constructing subharmonic functions ......Page 219
Topic 1 Rado's theorem ......Page 221
Topic 2 Hardy spaces ......Page 222
Topic 3 F. and R. Nevanlinna's theorem ......Page 226
Section 7 Exercises ......Page 227
Section 1 The Phragmen-Lindelof principle ......Page 230
Section 2 The Riesz-Thorin interpolation theorem ......Page 232
Section 3 M. Riesz's theorem ......Page 234
Section 4 Exercises ......Page 240
References ......Page 242
Index ......Page 248
Back Cover......Page 252