Combinatorial proofs of linear algebraic identities

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Melanie Dennis
Series: PhD thesis at Dartmouth College
Year: 2019

Language: English

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
1 Introduction 1
1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.1 Lewis Carroll Identity . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Dodgson/Muir Identity . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The Matrix Tree Theorem . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Involution Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Lewis Carroll and the Red Hot Potato 16
2.1 Connecting Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 The Red Hot Potato algorithm . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.2 Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Proof of φ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Identity Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Connection to Zeilberger 41
3.1 Zeilberger’s Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Alternate Definition of φ 1 . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Dodgson/Muir Identity 59
4.1 Connecting Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Generalized Red Hot Potato algorithm . . . . . . . . . . . . . . . . . 69
4.2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 Generalized Red Hot Potato algorithm . . . . . . . . . . . . . 74
4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Proof that φ 1 is a sign-reversing involution . . . . . . . . . . . . . . . 78
4.5 Proofs of Forest and Lewis Carroll Identities . . . . . . . . . . . . . . 84
5 Future Work 87
5.1 Jacobi’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Other Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References 91