Combinatorial models for computations with formal power series

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Andrew R. Maynard
Series: PhD thesis at University of Manchester
Year: 2000

Language: English

Abstract 6
Declaration 7
Copyright 8
Acknowledgements 9
The Author 10
1 Introduction 12
2 Background and Definitions 17
2.1 P o sets ..................................................................................................... 17
2.2 Run Decomposition ............................................................................... 20
2.3 Avoidance Partitions and W irings ....................................................... 22
2.4 Combinatorial Correspondences ......................................................... 27
2.5 Infinite Lower Triangular Matrices...................................................... 40
2.6 The Landweber-Novikov A lgebra ....................................................... 49
3 Functional Inversion 51
3.1 Combinatorial Objects for Functional Reversion ............................ 53
3.2 Combinatorial Bijections ...................................................................... 64
4 Functional Composition 70
4.1 Combinatorial Objects for Functional Composition ........................ 71
4.2 Combinatorial Bijections ...................................................................... 77
5 Cell-Sets 79
5.1 Generalities on Cell-Sets ...................................................................... 79
5.2 The Cohomology of (CP1)1 1 ................................................................ 85
5.3 Bounded Flag Manifolds ...................................................................... 88
5.4 Combinatorial Models for the Coproduct ......................................... 97
5.5 Further Properties of the Posets Pn ...................... 102
6 Interval Coproduct 104
6.1 Interval Cell-Sets ...................................................................................... 104
6.2 The Lattice of Non-Crossing Partitions ................................................ 105
A Numbers and Formulae 114
A.l Catalan and Motzkin Numbers ............................................................. 114
A .2 Catalan Powers ............... 116
A.3 Narayana Numbers ................................................................................... 117
A.4 Fuss Numbers ............................................................................................. 119
Bibliography 122