Author(s): John Riordan
Publisher: Krieger
Year: 1979
Title page
Preface
1. RECURRENCE
1.1. Introduction
1.2. Basic relations for binomial coefficients
1.3. Iterations of the basic recurrence
1.4. Some expansion formulas
1.5. Abel's generalization of the binomial formula
1.6. Multinomial Abel identities
2. INVERSE RELATIONS I
2.1. Introduction
2.2. The simplest inverse relations
2.3. A class of inverse relations
2.4. Chebyshev types
2.5. Legendre types
3. INVERSE RELATIONS II
3.1. Introduction
3.2. Abel inverse relations
3.3. Ordinary generating functions
3.4. Exponential generating functions
3.5. Multinomial inverses
4. GENERATING FUNCTIONS
4.1. Introduction
4.2. Products of ordinary generating functions
4.3. Multisection of series
4.4. Cycles of binomial coefficients
4.5. Lagrange series
5. PARTITION POLYNOMIALS
5.1. Introduction
5.2. Bell polynomials
5.3. Bell polynomial inverses
5.4. Polynomials for derivatives of inverse functions
5.5. Partition polynomials in number theory
6. OPERATORS
6.1. Introduction
6.2. The difference operator Δ
6.3. The difference operators xΔ and Δx
6.4. The difference operators x∇ and ∇x
6.5. The central difference operator
6.6. The differential operators xD and Dx
BIBLIOGRAPHY
INDEX