Colorimetry: Fundamentals and Applications (The Wiley-IS&T Series in Imaging Science and Technology)

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Colorimetry, the science of quantitvely describing color, is essential for color reproduction technology. This is because it creates standards by which to measure color, using mathematical techniques and software to ensure fidelity across media, allow accurate color mixing, and to develop color optimization.This book is a comprehensive and thorough introduction to colorimetry, taking the reader from basic concepts through to a variety of industrial applications. Set out in clear, easy-to-follow terminology, Ohta and Robertson explain fundamental principles such as color specification, the CIE (International Commission on Illumination) system, and color vision and appearance models. They also cover the following topics:the optimization of color reproduction;uniform color spaces and color difference formulae, including the CIEDE 2000 formula;applications of metamerism, chromatic adaptation, color appearance and color rendering;mathematical formulae for calculating color mixing, maximising luminous efficacy, and designing illuminants with specific properties.Colorimetry: Fundamentals and Applications is an ideal reference for practising color engineers, color scientists and imaging professionals working on color systems. It is also a practical guide for senior undergraduate and graduate students who want to acquire knowledge in the field.

Author(s): Noboru Ohta, Alan Robertson
Edition: 1
Year: 2006

Language: English
Pages: 350

Colorimetry......Page 3
Wiley–IS&T Series in Imaging Science and Technology......Page 4
Contents......Page 7
About the Authors......Page 11
Series Preface......Page 13
Preface......Page 15
Introduction......Page 17
1.1 Light......Page 19
1.2 Mechanism of the Human Eye......Page 22
1.3 Adaptation and Responsivity of the Human Eye......Page 25
1.4 Spectral Responsivity and the Standard Photometric Observer......Page 27
1.5 Definition of Photometric Quantities......Page 35
1.6 Photometric Units......Page 39
1.7 Calculation and Measurement of Photometric Quantities......Page 44
1.8 Relations Between Photometric Quantities......Page 49
Note 1.1 Luminous Exitance, Illuminance, and Luminance of a Perfect Diffusing Plane Light Source......Page 52
Note 1.2 Luminance and Brightness......Page 54
2.1 Mechanism of Color Vision......Page 57
2.2 Chemistry of Color Vision......Page 64
2.3 Color Specification and Terminology......Page 66
2.4 Munsell Color System......Page 70
2.5 Color System Using Additive Color Mixing......Page 75
Note 2.1 Colorfulness, Chroma and Saturation......Page 79
3.1 RGB Color Specification System......Page 81
3.2 Conversion into XYZ Color Specification System......Page 86
3.3 X(10)Y(10)Z(10) Color Specification System......Page 89
3.4 Tristimulus Values and Chromaticity Coordinates......Page 92
3.5 Metamerism......Page 94
3.6 Dominant Wavelength and Purity......Page 96
3.7 Color Temperature and Correlated Color Temperature......Page 100
3.8 Illuminants and Light Sources......Page 103
3.9 Standard and Supplementary Illuminants......Page 110
Note 3.1 Derivation of Color Matching Functions from Guild and Wright’s Results......Page 114
Note 3.2 Conversion between Color Specification Systems......Page 117
Note 3.3 Conversion into XYZ Color Specification System......Page 119
Note 3.4 Imaginary Colors [X] and [Z]......Page 123
Note 3.5 Photometric Quantities in the X(10)Y(10)Z(10) Color System......Page 126
Note 3.6 Origin of the Term ‘Metamerism’......Page 127
Note 3.7 Simple Methods for Obtaining Correlated Color Temperature......Page 128
Note 3.8 Color Temperature Conversion Filter......Page 129
Note 3.9 Spectral Distribution of Black-body Radiation......Page 131
4.1 Uniform Chromaticity Diagrams......Page 133
4.2 Uniform Lightness Scales (ULS)......Page 140
4.3 CIE Uniform Color Spaces......Page 145
4.4 Correlates of Perceived Attributes......Page 150
4.5 Comparing CIELAB and CIELUV Color Spaces......Page 152
4.6 Conversion of Color Difference......Page 158
4.7 Color Difference Equations Based on CIELAB......Page 161
Note 4.1 Calculation of Munsell Value V from Luminous Reflectance Y......Page 162
Note 4.2 Modified CIELAB and CIELUV Equations for Dark Colors......Page 164
Note 4.3 Other Color Difference Formulas......Page 165
Note 4.4 Direct Calculation of Hue Difference DH*......Page 168
5.1 Direct Measurement of Tristimulus Values......Page 171
5.2 Spectral Colorimetry......Page 174
5.3 Geometrical Conditions for Measurement......Page 176
5.4 Calculation of Colorimetric Values......Page 179
5.5 Colorimetric Values in CIELAB and CIELUV Uniform Color Spaces......Page 185
Note 5.1 Spectral Colorimetry of Fluorescent Materials......Page 190
Note 5.2 Reference Standard for Reflection Measurements......Page 191
6 Evolution of CIE Standard Colorimetric System......Page 193
6.1 Additive Mixing......Page 194
6.2 Subtractive Mixing......Page 198
6.3 Maximum Value of Luminous Efficacy and Optimal Colors......Page 202
6.4 Chromatic Adaptation Process......Page 206
6.5 von Kries’ Predictive Equation for Chromatic Adaptation......Page 209
6.6 CIE Predictive Equations for Chromatic Adaptation......Page 212
6.7 Color Vision Models......Page 215
6.8 Color Appearance Models......Page 216
6.9 Analysis of Metamerism......Page 222
Note 6.1 Color Mixing Rule......Page 229
Note 6.2 Lambert–Beer Law......Page 231
Note 6.3 Method for Calculating the Maximum Value of the Luminous Efficacy of Radiation......Page 232
Note 6.4 Method for Calculating Optimal Colors......Page 233
Note 6.5 Method for Obtaining Fundamental Spectral Responsivities......Page 234
Note 6.6 Deducing von Kries’ Predictive Equation for Chromatic Adaptation......Page 239
Note 6.7 Application of von Kries’ Equation for Chromatic Adaptation......Page 241
Note 6.8 Application of CIE 1994 Chromatic Adaptation Transform......Page 243
Note 6.9 Theoretical Limits for Deviation from Metamerism......Page 244
7.1 Evaluation of the Color Rendering Properties of Light Sources......Page 247
7.2 Evaluation of the Spectral Distribution of Daylight Simulators......Page 255
7.3 Evaluation of Whiteness......Page 260
7.4 Evaluation of Degree of Metamerism for Change of Illuminant......Page 262
7.5 Evaluation of Degree of Metamerism for Change of Observer......Page 267
7.6 Designing Spectral Distributions of Illuminants......Page 273
7.7 Computer Color Matching......Page 279
Note 7.1 Computation Method for Prescribed Spectral Distributions......Page 286
AI.1 SI Units......Page 289
AI.4 Greek Letters......Page 290
Appendix II Matrix Algebra......Page 293
AII.1 Addition and Subtraction of Matrices......Page 294
AII.3 Inverse Matrix......Page 295
AII.4 Transpose Matrix......Page 296
Appendix III Partial Derivatives......Page 299
Appendix IV Tables......Page 303
References......Page 339
Bibliography......Page 345
Index......Page 347
COLOUR PLATE SECTION......Page 353