Collision phenomena can be ordinary like a rain drop impacting onto a window, a leaf or
a puddle, or extraordinary such as a meteorite or a bolide collision with Earth. Some are
frequently encountered in science and everyday life, others are extremely rare. Being
very different at first sight, collision phenomena in liquids and solids share many under-
lying common features.
The subject of the present book is highly cross-disciplinary with a very wide scope of
applications in mind, and such a collection of topics in one book does not yet exist, as to
our knowledge. One of the main motivations for providing such a collection of topics is
to underline the commonality among the various occurrences of collision phenomena,
which lead to similar physical and technological ideas and modeling approaches. An
improved in-depth understanding of the phenomena can be expected after recognizing
the common underlying physics involved. A second motivation is that the knowledge
presently available on the subject is extremely widely scattered, mainly according to
applications, and in a large number of different journals. For example, collisions in the
solid mechanics context are considered as a totally different subject than impacts in
the fluid mechanical context, whereas in reality inevitable geometric similarities dic-
tate inevitable kinematic similarities, and in some cases similar rheological behavior,
which greatly unifies these two fields to the extent still unrecognized by the majority
of practitioners. This obscures the true state of the art, with the associated danger that
research may be unintentionally and unnecessarily duplicated or some novel develop-
ments delayed.
Author(s): Alexander L. Yarin, Ilia V. Roisman, and Cameron Tropea
Publisher: Cambridge University Press
Year: 2017
Language: English
Pages: 630
Contents......Page 5
Preface......Page 12
1 Introduction......Page 16
1.1 History and Outlook......Page 17
1.2 Dimensionless Groups......Page 20
1.3 Mass and Momentum Balance Equations......Page 22
1.4 Inviscid and Viscous Newtonian Fluids: The Incompressible Euler and Navier–Stokes Equations......Page 24
1.5 Impact at Liquid Surface and Equations of Impulsive Motion......Page 27
1.6 Boundary Layer Equations......Page 28
1.7 Quasi-one-dimensional and Lubrication Approximations in Problems on Drop Impact and Spreading......Page 30
1.8 Wettability......Page 34
1.9 Rheological Constitutive Equations of Non-Newtonian Fluids and Solids......Page 37
1.10 Instabilities and Small Perturbations: Rayleigh Capillary Instability, Bending Instability, Kelvin–Helmholtz Instability, Rayleigh–Taylor Instability......Page 44
1.11 Total Mechanical Energy of Deforming Bodies: Where Is It Lost?......Page 52
1.12 References......Page 54
2.1 Inviscid Flow in a Thin Film on a Wall......Page 59
2.2 Propagation of Kinematic Discontinuity......Page 67
2.3 External Irrotational Flows About Blunt Bodies......Page 73
2.4 Flows Past Arbitrary Axisymmetric Bodies of Revolution......Page 76
2.5 Transient Motion in Inviscid Fluids and Forces Associated with the Added Masses......Page 78
2.6 Friction and Shape Drag......Page 85
2.7 Dynamics of a Rim Bounding a Free Liquid Sheet......Page 90
2.8 References......Page 97
Part I Collision of Liquid Jets and Drops with a Dry Solid Wall......Page 7
3.1 Normal and Inclined Impact of Inviscid Planar Jets onto a Plane Wall......Page 102
3.2 Normal Impact of Axisymmetric Impinging Jet......Page 106
3.3 Hydraulic Jump......Page 111
3.4 References......Page 113
4 Drop Impact onto a Dry Solid Wall......Page 115
4.1 Inviscid Flow on a Wall Generated by Inertia-Dominated Drop Impact......Page 117
4.2 Flow in a Spreading Viscous Drop, Including Description of Inclined Impact and Thermal Effects......Page 121
4.3 Initial Phase of Drop Impact......Page 135
4.4 Maximum Spreading Diameter......Page 138
4.5 Time Evolution of the Drop Diameter: Rim Dynamics on a Wall......Page 141
4.6 Drop Impact onto Spherical Targets and Encapsulation......Page 143
4.7 Outcomes of Drop Impact onto a Dry Wall......Page 145
4.8 The Effect of Reduced Pressure of the Surrounding Gas......Page 148
4.9 Drop Impact onto Hot Rigid Surfaces......Page 149
4.10 Drop Impact with Solidification and Icing......Page 155
4.11 References......Page 164
5 Drop Impact onto Dry Surfaces with Complex Morphology......Page 170
5.1 Drop Splashing on Rough and Textured Surfaces......Page 171
5.2 Drop Impact Close to a Pore......Page 174
5.3 Drop Impact onto Porous Surfaces......Page 180
5.4 Nano-textured Surfaces: Drop Impact onto Suspended Nanofiber Membranes......Page 192
5.5 Drop Impact onto Nanofiber Mats on Impermeable Substrates and Suppression of Splashing......Page 201
5.6 Hydrodynamic Focusing in Drop Impact onto Nanofiber Mats and Membranes......Page 204
5.7 Impact of Aqueous Suspension Drops onto Non-Wettable Porous Membranes: Hydrodynamic Focusing and Penetration of Nanoparticles......Page 215
5.8 Drop Impact onto Hot Surfaces Coated by Nanofiber Mats......Page 229
5.9 Nano-textured Surfaces: Suppression of the Leidenfrost Effect......Page 238
5.10 Bouncing Prevention: Dynamic Electrowetting......Page 246
5.11 References......Page 262
Part III Spray Formation and Impact onto Surfaces......Page 8
6.1 Drop Impact onto Thin Liquid Layer on a Wall: Weak Impacts and Self-similar Capillary Waves......Page 270
6.2 Strong Impacts of Drops onto Thin Liquid Layer: Crown Formation......Page 272
6.3 Drop Impact onto Thick Liquid Layers on a Wall: Cavity Expansion......Page 288
6.4 Residual Film Thickness......Page 298
6.5 Drop Impact onto a Deep Liquid Pool: Crater and Crown Formation, the Worthington Jets and Bubble Entrapment......Page 302
6.6 Bending Instability of a Free Viscous Rim on Top of the Crown: Mechanism of Splash......Page 308
6.7 Impact of Drop Train......Page 325
6.8 References......Page 330
7.1 Fundamentals......Page 338
7.2 Non-Optical Measurement Techniques......Page 344
7.3 Direct Imaging......Page 345
7.4 Non-Imaging Optical Measurement Techniques......Page 355
7.5 Measurement Techniques for Liquid Films......Page 362
7.6 References......Page 365
8 Atomization and Spray Formation......Page 369
8.1 Primary Atomization......Page 370
8.2 Secondary Aerodynamic Breakup......Page 381
8.3 Drop–Drop Binary Collisions in Sprays......Page 392
8.4 Secondary Drop Detachment from a Filament......Page 406
8.5 Secondary Electrically Driven Drop Breakup: The Rayleigh Limit......Page 416
8.6 References......Page 421
9 Spray Impact......Page 427
9.1 Spray Impact onto Liquid Films......Page 432
9.2 Description of the Secondary Spray......Page 455
9.3 Correlations for Spray Impact Phenomena......Page 477
9.4 References......Page 482
Part V Solid–Solid Collisions......Page 9
10.1 Impact of Rigid Body at Liquid Surface......Page 488
10.2 Rigid Body Entry and Penetration into Liquid: The Wagner Problem......Page 493
10.3 Rigid Sphere Entry and Penetration into Liquid......Page 497
10.4 References......Page 500
11.1 Motion of a Rigid Immersed Particle near a Wall......Page 502
11.2 Deformation of an Immersed Elastic Particle......Page 504
11.3 Restitution Coefficient......Page 506
11.4 Effect of Particle Material and Surface Properties......Page 508
11.5 References......Page 510
12.1 Relatively Weak and Strong Impacts, the Split Hopkinson Pressure Bar: Propagation of Elastic Waves in Long Rods – Inertial Effects and Anelastic Material Properties. Strong Impacts and Irreversible Plastic Effects......Page 514
12.2 Impingement of a Rigid/Semi-Brittle Ice Particle......Page 521
12.3 References......Page 528
13.1 Shaped-charge Jet Penetration Depth......Page 530
13.2 Crater Configuration due to Shaped-charge Jet Penetration......Page 532
13.3 Normal Penetration of an Eroding Projectile into an Elastic–Plastic Target......Page 536
13.4 High-Speed Penetration......Page 557
13.5 Quasi-Steady Penetration of an Eroding Projectile......Page 559
13.6 Normal and Oblique Penetration of a Rigid Projectile into an Elastic–Plastic Target......Page 560
13.7 Explosion Welding......Page 568
13.8 References......Page 579
14.1 Ice Particle Collision with a Dry Solid Wall......Page 581
14.2 Ice Particle: Fragmentation Threshold for an Impact Velocity......Page 585
14.3 Dynamic Fracture of a Deforming Elastic–Plastic Material......Page 588
14.4 Fragmentation of Thick Elastic–Plastic Targets......Page 592
14.5 Fragmentation of an Impacting Projectile......Page 602
14.6 Debris Cloud Produced by Projectile Impact, Vulnerability......Page 605
14.7 Effect of the Energy of the Plastic Dissipation on the Size of the Smallest Fragment......Page 613
14.8 References......Page 614
Index......Page 619