Cohomology of Vector Bundles & Syzygies

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The central theme of this book is a detailed exposition of the geometric technique of calculating syzygies. While this is an important tool in algebraic geometry, Jerzy Weyman has elected to write from the point of view of commutative algebra in order to avoid being tied to special cases from geometry. No prior knowledge of representation theory is assumed. Chapters on several applications are included, and numerous exercises will give the reader insight into how to apply this important method.

Author(s): Jerzy Weyman
Edition: 1st
Year: 2003

Language: English
Pages: 388

Cover......Page 1
Half-title......Page 3
Title......Page 7
Copyright......Page 8
Dedication......Page 9
Contents......Page 11
Preface......Page 13
1.1.1. Exterior, Divided, and Symmetric Powers; Multiplication and Diagonal Maps......Page 17
1.1.2. Partitions, Skew Partitions. Combinatorics of Z-Graded Tableaux.......Page 24
1.2.1. Regular Sequences, Koszul Complexes, Depth......Page 28
1.2.2. Cohen–Macaulay Rings and Modules, Gorenstein Rings......Page 30
1.2.3. Minimal Resolutions......Page 33
1.2.4. Effective Calculation of Normalization......Page 35
1.2.5. Duality for Proper Morphisms and Rational Singularities......Page 36
1.3. Determinants of Complexes......Page 43
2.1. Schur Functors and Weyl Functors......Page 48
2.2. Schur Functors and Highest Weight Theory......Page 65
2.3. Properties of Schur Functors. Cauchy Formulas, Littlewood–Richardson Rule, and Plethysm......Page 73
2.4. The Schur Complexes......Page 82
Definition of Schur Modules......Page 94
Schur and Weyl Modules in Positive Characteristic......Page 95
Littlewood–Richardson Rule......Page 97
Acyclicity Properties of Schur Complexes......Page 99
3.1. The Plücker Embeddings......Page 101
3.2. The Standard Open Coverings of Flag Manifolds and the Straightening Law......Page 107
3.3. The Homogeneous Vector Bundles on Flag Manifolds......Page 114
Isotropic Grassmannians......Page 120
Combinatorial Proof of Littlewood–Richardson Rule......Page 122
Canonical Bundles on Flag Varieties......Page 125
4.1. The Formulation of Bott’s Theorem for the General Linear Group......Page 126
4.2. The Proof of Bott’s Theorem for the General Linear Group......Page 133
4.3. Bott’s Theorem for General Reductive Groups......Page 139
The General Linear Group......Page 148
Other Classical Groups......Page 149
Tensor Product Multiplicities......Page 150
5 The Geometric Technique......Page 152
5.1. The Formulation of the Basic Theorem......Page 153
5.2. The Proof of the Basic Theorem......Page 157
5.3. The Proof of Properties of Complexes F(Nu)......Page 162
5.4. The G-Equivariant Setup......Page 165
5.5. The Differentials in Complexes F(Nu)......Page 168
5.6. Degeneration Sequences......Page 170
Cones over Nonsingular Curves......Page 172
The Representations of SL(2). Binary Forms......Page 173
Highest Weight Vector Orbit Varieties......Page 174
6 The Determinantal Varieties......Page 175
6.1. The Lascoux Resolution......Page 176
6.2. The Resolutions of Determinantal Ideals in Positive Characteristic......Page 184
6.3. The Determinantal Ideals for Symmetric Matrices......Page 191
6.4. The Determinantal Ideals for Skew Symmetric Matrices......Page 203
6.5. Modules Supported in Determinantal Varieties......Page 211
6.6. Modules Supported in Symmetric Determinantal Varieties......Page 225
6.7. Modules Supported in Skew Symmetric Determinantal Varieties......Page 229
The Symplectic Group......Page 234
The Orthogonal Group......Page 235
The First Fundamental Theorem for the General Linear Group......Page 236
Differentials in the Resolutions of Ideals of Minors of a Generic Matrix......Page 237
Differentials in the Resolutions of Ideals of Pfaffians of a Generic Skew Symmetric Matrix......Page 238
Maximal Cohen–Macaulay Modules with Linear Resolutions......Page 239
Resolutions of K(Phi)......Page 240
Resolutions of Powers of the Ideal of 2t × 2t Pfaffians of a (2t + 1) × (2t + 1) Skew Symmetric Matrix......Page 242
7.1. Basic Properties......Page 244
7.2. Rank Varieties for Symmetric Tensors......Page 250
7.3. Rank Varieties for Skew Symmetric Tensors......Page 255
Minimal Resolutions of the Ideal…......Page 261
The Isotropic Grassmannian IGrass(3, 6)......Page 265
8 The Nilpotent Orbit Closures......Page 267
8.1. The Closures of Conjugacy Classes of Nilpotent Matrices......Page 268
8.2. The Equations of the Conjugacy Classes of Nilpotent Matrices......Page 279
8.3. The Nilpotent Orbits for Other Simple Groups......Page 294
8.4. Conjugacy Classes for the Orthogonal Group......Page 299
8.5. Conjugacy Classes for the Symplectic Group......Page 312
Type B.......Page 325
Type C.......Page 326
Type D.......Page 327
9 Resultants and Discriminants......Page 329
9.1. The Generalized Resultants......Page 330
9.2. The Resultants of Multihomogeneous Polynomials......Page 334
9.3. The Generalized Discriminants......Page 344
9.4. The Hyperdeterminants......Page 348
Exercises for Chapter 9......Page 371
Discriminants of Adjoint Representations......Page 372
Determinantal Expressions for Powers of the Resultant......Page 374
References......Page 375
Notation Index......Page 383
Subject Index......Page 385