This book gives comprehensive and balanced coverage of the principles of cognitive radio communications, cognitive networks, and details of their implementation, including the latest developments in the standards and spectrum policy. Case studies, end-of-chapter questions, and descriptions of various platforms and test beds, together with sample code, give hands-on knowledge of how cognitive radio systems can be implemented in practice. Extensive treatment is given to several standards, including IEEE 802.22 for TV White Spaces and IEEE SCC41. Written by leading people in the field, both at universities and major industrial research laboratories, this tutorial text gives communications engineers, R&D engineers, researchers, undergraduate and post graduate students a complete reference on the application of wireless communications and network theory for the design and implementation of cognitive radio systems and networks. Each chapter is written by internationally renowned experts, giving complete and balanced treatment of the fundamentals of both cognitive radio communications and cognitive networks, together with implementation details Extensive treatment of the latest standards and spectrum policy developments enables the development of compliant cognitive systems Strong practical orientation - through case studies and descriptions of cognitive radio platforms and testbeds - shows how "real world" cognitive radio systems and network architectures have been built Additional materials, slides, solutions to end-of-chapter problems, and sample codes, are available at www.elsevierdirect.com/companions Alexander M. Wyglinski is an Assistant Professor of Electrical and Computer Engineering at Worcester Polytechnic Institute (WPI), Director of the WPI Limerick Project Center, and Director of the Wireless Innovation Laboratory (WI Lab). Maziar Nekovee leads cognitive radio research at BT (British Telecom) and is also involved in leading a number of large EU and International collaborative R&D projects on cognitive radio networks and secondary/dynamic spectrum access. Y. Thomas Hou is an Associate Professor of Electrical and Computer Engineering at Virginia Polytechnic Institute and State University ("Virginia Tech"), Blacksburg, VA, USA. Each chapter is written by internationally renowned experts, giving complete and balanced treatment of the fundamentals of both cognitive radio communications and cognitive networks, together with implementation detailsExtensive treatment of the latest standards and spectrum policy developments enables the development of compliant cognitive systemsStrong practical orientation - through case studies and descriptions of cognitive radio platforms and testbeds - shows how "real world" cognitive radio systems and network architectures have been builtAdditional materials, slides, solutions to end-of-chapter problems, and sample codes, are available at www.elsevierdirect.com/companions
Author(s): Alexander M. Wyglinski, Maziar Nekovee, Thomas Hou
Year: 2009
Language: English
Pages: 736
Cognitive Radio Communications and Networks: Principles and Practice......Page 2
Copyright......Page 3
Dedication......Page 4
Contents......Page 6
Preface......Page 19
About the Editors......Page 22
1.1 Introduction......Page 24
1.2.1 What Is Software-Defined Radio?......Page 25
1.2.2 Evolution of Software-Defined Radio......Page 27
1.3.1 What Is Cognitive Radio?......Page 29
1.3.2 Evolution of Cognitive Radio......Page 31
1.4.1 Interoperability......Page 32
1.4.2 Dynamic Spectrum Access......Page 33
1.5 Book Organization......Page 35
Theme 1: Cognitive radiocommunicationtechniques andalgorithms......Page 36
2.2 Spectrum: Nature’s Communication Highway......Page 38
2.2.1 Physical Characteristics of Spectrum......Page 39
2.3.1 Objectives and Philosophy......Page 42
2.3.2 Early History and Success......Page 43
2.4 Emerging Regulatory Challenges and Actions......Page 44
2.4.1 Era of Increasing Regulatory Challenges......Page 46
2.4.2 Allocation, Reallocation, and Optimization......Page 47
2.4.3 Regulatory Actions......Page 48
2.5.1 Should a Regulator Allow Cognitive Access?......Page 49
2.5.2 How to Determine the Rules of Entry......Page 51
2.5.3 Regulatory Implications of Different Methods of Cognition......Page 52
2.5.4 Regulatory Developments to Date......Page 53
2.6.1 Early Spectrum Occupancy Studies......Page 54
2.6.3 Spectrum Observatory......Page 55
2.6.4 Spectral Sensor Arrays......Page 57
2.7 Applications for Spectrum Occupancy Data......Page 58
2.7.1 Regulatory Guidance......Page 59
2.7.4 Societal Value......Page 60
2.9 Problems
......Page 61
3.1 Introduction......Page 64
3.2.1 Fundamental Limits......Page 65
3.2.2 Sources of Transmission Error......Page 66
3.3 Digital Modulation Techniques......Page 68
3.3.1 Representation of Signals......Page 69
3.3.2 Euclidean Distance between Signals......Page 70
3.3.4 Power Efficiency......Page 71
3.3.5 M-ary Phase Shift Keying......Page 72
3.3.6 M-ary Quadrature Amplitude Modulation......Page 73
3.4 Probability of Bit Error......Page 74
3.4.1 Derivation of Probability of Bit Error......Page 75
3.5 Multicarrier Modulation......Page 80
3.5.1 Basic Theory......Page 81
3.5.2 Orthogonal Frequency Division Multiplexing......Page 86
3.5.3 Filter Bank Multicarrier Systems......Page 89
3.6.1 Interference in Multicarrier Systems......Page 90
3.6.2 Distortion Reduction......Page 91
3.6.3 Optimal Single-Tap Per-Tone Equalization for OFDM Systems......Page 93
3.7 Intersymbol Interference......Page 95
3.7.2 Chernoff Bound......Page 97
3.8 Pulse Shaping......Page 98
3.8.1 Nyquist Pulse Shaping Theory......Page 99
3.8.2 Nyquist Frequency-Domain No ISI Criterion......Page 102
3.10 Problems
......Page 103
4.1 Introduction......Page 108
4.2 Primary Signal Detection......Page 109
4.2.1 Energy Detector......Page 111
4.2.3 Matched Filter......Page 115
4.2.4 Cooperative Sensing......Page 116
4.2.5 Other Approaches......Page 117
4.3.1 Definition and Implications of Spectrum Opportunity......Page 118
4.3.2 Spectrum Opportunity Detection......Page 120
4.4.1 MAC Layer Performance Measures......Page 124
4.4.2 Global Interference Model......Page 125
4.4.3 Local Interference Model......Page 126
4.5 Fundamental Trade-Offs: Sensing Accuracy Versus Sensing Overhead......Page 129
4.6 Chapter Summary and Further Readings......Page 131
4.7 Problems
......Page 132
5.1 Introduction......Page 136
5.2 Unlicensed Spectrum Sharing......Page 140
5.3 Licensed Spectrum Sharing......Page 142
5.4 Secondary Spectrum Access......Page 147
5.6 Real-Time SSA
......Page 148
5.6.1 Negotiated Access......Page 149
5.6.2 Is Quality of Service Provisioning Possible in a Shared Band?......Page 151
5.6.3 Opportunistic Access......Page 156
5.6.4 Overlay Approach......Page 157
5.6.5 Underlay Approach......Page 163
5.7 Chapter Summary
......Page 168
5.8 Problems
......Page 169
6.1 Introduction
......Page 172
6.2 Wireless Transmission For Dynamic Spectrum Access......Page 173
6.2.2 Underlay and Overlay Transmission......Page 174
6.3 Noncontiguous Orthogonal Frequency Division Multiplexing......Page 177
6.4 NC-OFDM-Based Cognitive Radio: Challenges and Solutions......Page 178
6.4.1 Interference Mitigation......Page 179
6.4.2 FFT Pruning for NC-OFDM......Page 188
6.4.3 Peak-to-Average Power Ratio Problem in NC-OFDM......Page 190
6.5 Chapter Summary and Further Readings......Page 197
6.6 Problems
......Page 198
7.1 Introduction
......Page 200
7.2 Adaptation Engine......Page 201
7.3.1 Transmission Parameters......Page 202
7.3.2 Environmental Measurements......Page 203
7.4 parameter relationships......Page 205
7.4.1 Single Radio Performance Objectives......Page 206
7.4.2 Multiple Objective Goals......Page 208
7.5 Cognitive Adaptation Engines......Page 210
7.5.1 Expert Systems......Page 211
7.5.2 Genetic Algorithms......Page 212
7.5.3 Case-Based Reasoning Systems......Page 214
7.6 Chapter Summary......Page 219
7.7 Problems
......Page 220
Theme 2: Cognitive radionetwork theory......Page 222
8.2.1 Protocol Architecture......Page 224
8.2.2 Switching Technologies......Page 226
8.2.3 Encapsulation and Multiplexing......Page 227
8.2.4 Naming and Addressing......Page 228
8.2.7 Congestion Control and Flow Control......Page 229
8.2.8 Error Control......Page 230
8.3.1 Wireless Transmissions......Page 231
8.3.2 Mobility......Page 232
8.4.1 Mobility Models......Page 233
8.4.2 The Random Waypoint Model......Page 234
8.4.3 Perfect Simulation......Page 236
8.5 Power Control and Multiuser Diversity......Page 237
8.6 Multiple Access Schemes......Page 240
8.6.1 Polling......Page 241
8.6.2 ALOHA and Slotted ALOHA......Page 243
8.6.3 CSMA......Page 244
8.6.4 CSMA / CA......Page 247
8.7 Routing, Energy Efficiency, and Network Lifetime......Page 250
8.8 Congestion Control in Wireless Networks......Page 252
8.9 Cross-Layer Design and Optimization......Page 254
8.11 Problems
......Page 256
9.1 Introduction
......Page 258
9.2 Cognitive Radio Network Architectures......Page 259
9.2.1 Cognitive Resource Manager Framework......Page 260
9.2.2 Architectures for Spectrum Sensing......Page 267
9.2.3 Network Optimization through Utilities......Page 270
9.2.4 Value of Perfect Information......Page 272
9.2.5 Policy Support as a Part of the Architecture......Page 273
9.2.6 Spectrum Brokering Services......Page 274
9.2.7 Information Modeling......Page 275
9.3 Topology-Aware CRN Architectures......Page 276
9.3.1 Statistical Characterization of Node Locations......Page 277
9.3.2 Spatial Statistics of Spectrum Usage......Page 280
9.4 Publish-Subscribe CRN Architecture......Page 281
9.6 Problems
......Page 282
10.1 Introduction
......Page 284
10.1.1 Diversity......Page 285
10.1.2 User Cooperation and Cognitive Systems......Page 286
10.2.1 Introduction......Page 287
10.2.2 A General Three-Node Relay Channel......Page 290
10.2.3 Wireless Relay Channel......Page 296
10.3.1 Introduction......Page 306
10.3.2 Two-User Cooperative Network......Page 307
10.3.3 Cooperative Wireless Network......Page 311
10.4 Multihop Relay Channel......Page 320
10.6 Problems
......Page 327
11.1 Introduction
......Page 330
11.1.1 The Rise and Importance of Cognitive Networks......Page 331
11.1.2 Types of Cognitive Behavior......Page 332
11.1.3 Chapter Preview......Page 334
11.2.1 Communications Channels......Page 335
11.2.2 Information Theoretic Metrics of Interest......Page 337
11.2.3 Classic Channels......Page 339
11.3 Interference-Avoiding Behavior: Spectrum Interweave......Page 341
11.4.1 Underlay in Small Networks: Achievable Rates......Page 343
11.4.2 Underlay in Large Networks: Scaling Laws......Page 344
11.5.1 Opportunistic Interference Cancellation......Page 347
11.5.2 Asymmetrically Cooperating Cognitive Radio Channels......Page 348
11.7 Problems
......Page 355
12.1 Introduction......Page 358
12.2 Mathematical Models at Multiple Layers......Page 360
12.2.1 Scheduling and Power Control......Page 361
12.2.2 Routing......Page 365
12.3.1 Problem Formulation......Page 367
12.3.2 Solution Overview......Page 368
12.3.3 Linear Relaxation......Page 370
12.3.4 Local Search Algorithm......Page 373
12.3.5 Selection of Partition Variables......Page 374
12.4.1 Simulation Setting......Page 375
12.4.2 Results and Observations......Page 376
12.6 Problems
......Page 385
Theme 3: Applications,standards, andimplementations ofcognitive radio......Page 388
13.1 Introduction
......Page 390
13.2.1 A Brief History of Elastic Spectrum Management......Page 391
13.2.2 A View of Wireless Network Futurists......Page 394
13.2.3 Ambiguity in CR Definitions......Page 395
13.2.4 A Glossary of Cognitive Radio Definitions......Page 398
13.2.6 Concepts Related to Spectrum Management......Page 399
13.2.7 Concepts Related to Computational Platforms......Page 400
13.3.1 General Overview......Page 402
13.3.2 IEEE 1900.1......Page 403
13.3.4 IEEE 1900.3......Page 404
13.3.6 IEEE 1900.5......Page 405
13.3.8 Related Standardization Efforts......Page 406
13.3.9 Results and Roadmap of IEEE SCC41......Page 407
13.5 Problems
......Page 408
14.1 Introduction
......Page 410
14.1.2 Regulatory Scenario for TV White Space......Page 411
14.1.3 Dynamic Spectrum Access Models......Page 412
14.2 Overview of IEEE 802.22 Standard......Page 413
14.2.2 Reference Architecture......Page 414
14.3.1 Preamble, Control Header, and MAP Definition......Page 416
14.3.2 CBP Packet Format......Page 419
14.3.3 Channel Coding and Modulation Schemes......Page 420
14.3.5 RF Mask......Page 421
14.4.1 Superframe and Frame Structures......Page 422
14.4.2 Incumbent Detection and Notification Support......Page 425
14.4.3 Multichannel Operation......Page 426
14.4.4 Synchronization......Page 427
14.4.5 Self-Coexistence......Page 428
14.4.6 Quality-of-Service Support......Page 431
14.4.7 Spectrum Management Model......Page 432
14.4.8 Spectrum Manager......Page 433
14.4.10 Incumbent Database Support......Page 434
14.5.1 Incumbent Protection Radius......Page 435
14.5.2 Sensing Algorithms......Page 439
14.6.2 Other Related Standards: IEEE 802.16h, SCC41......Page 450
14.7 Chapter Summary and Future Directions......Page 451
14.8 Problems
......Page 452
15.1.1 Overview of Security Threats to Incumbent Coexistence......Page 454
15.1.2 Overview of Security Threats to Self-Coexistence......Page 456
15.1.3 Radio Software Security Threats......Page 457
15.2.1 Spectrum Sensing in Hostile Environments......Page 458
15.2.2 Classification of PUE Attacks......Page 459
15.2.3 Noninteractive Localization of Primary Signal Transmitters......Page 460
The Effects of PUE Attacks......Page 464
Simulation Setting and Objectives......Page 466
The Case of a Single Transmitter......Page 467
15.3 Robust Distributed Spectrum Sensing......Page 469
15.3.1 Technical Background......Page 470
15.3.2 Weighted Sequential Probability Ratio Test......Page 472
15.3.3 Simulations......Page 474
15.4 Security Vulnerabilities in Ieee 802.22......Page 479
15.4.1 The 802.22 Air Interface......Page 480
15.4.2 An Overview of the IEEE 802.22 Security Sublayer......Page 483
15.4.3 Security Vulnerabilities in Coexistence Mechanisms......Page 485
15.5 Security Threats to the Radio Software......Page 486
15.6 Problems
......Page 488
16.1 Introduction
......Page 490
16.1.1 Requirements......Page 491
16.1.3 Economic Value of the Spectrum......Page 493
16.1.4 Benefits of Cognitive Radio......Page 495
16.2.1 TETRA......Page 496
16.2.2 C2000......Page 499
16.3.1 The Firework Disaster in The Netherlands......Page 500
16.3.2 Bandwidth Requirements......Page 501
16.3.3 Spectrum Organization......Page 502
16.3.4 Propagation Conditions......Page 504
16.3.5 White Space Assessment......Page 505
16.3.7 Antijamming......Page 508
16.4 Chapter Summary
......Page 509
16.5 Problems
......Page 510
17.1 Introduction
......Page 512
17.1.1 Dynamic Spectrum Micro-Auctions......Page 513
17.2 Rethinking Spectrum Auctions......Page 514
17.3.2 Pricing Models......Page 516
17.4 Economically Robust Spectrum Auctions......Page 517
17.4.3 Supporting Other Bidding Formats......Page 520
17.4.5 VERITAS Performance and Complexity......Page 521
17.5 Double Spectrum Auctions for Multiparty Trading......Page 522
17.5.1 Grouping Buyers......Page 524
17.5.3 Pricing......Page 525
17.6 Chapter Summary and Further Reading......Page 526
17.7 Problems
......Page 528
18.1.1 Introduction to GNU Radio......Page 530
18.1.2 The Software......Page 531
18.1.4 GNU Radio Resources......Page 532
18.2 Analog Receiver
......Page 533
18.2.2 Importing Necessary Modules......Page 534
18.2.3 The Initialization Function......Page 535
18.2.4 Constructing the Graph......Page 536
18.3 Digital Transmitter
......Page 538
18.3.1 Building the Radio......Page 539
Modulating the Data......Page 540
Setting up the USRP......Page 541
18.3.2 Running the Transmitter......Page 543
18.4 Digital Receiver
......Page 545
18.4.1 Building the Radio......Page 546
18.4.2 Creating the User Interface......Page 550
18.4.3 Running the Receiver......Page 554
18.5.1 Building the Radio......Page 555
18.5.2 Running the Transmitter......Page 557
18.7 Problems
......Page 559
19.1 Introduction
......Page 562
19.2.1 Test Bed Architecture......Page 564
19.2.2 Supported Configurations......Page 568
19.2.3 Case Study: Spectrum Sensing......Page 570
19.2.4 Lessons Learned......Page 575
19.3.2 Integrated Radio Front End: The RFIC......Page 577
19.3.3 Experimental Cognitive Radio Platform......Page 582
19.3.4 Case Study: Cyclostationary Analysis......Page 587
19.3.5 Lessons Learned......Page 588
19.4.1 Introduction......Page 589
19.4.2 Design Motivation......Page 592
19.4.3 Experiments and Use Cases......Page 600
19.4.4 Lessons Learned......Page 603
19.5 Chapter Summary
......Page 605
19.6 Problems
......Page 606
20.1 Introduction
......Page 610
20.1.1 Organization......Page 611
20.2 Cognitive Radio Architectures......Page 612
20.2.1 Dynamic Spectrum Access......Page 614
20.2.2 The Haykin Dynamic Spectrum Architecture......Page 615
20.2.3 The Ideal CRA......Page 617
20.2.4 Networking and CRA Evolution......Page 618
20.3.1 Product Differentiation......Page 620
20.3.2 Protocol Stacks......Page 621
20.3.5 Spectrum Awareness......Page 622
20.3.7 User Expectations......Page 623
20.3.9 Commercial Sentient Spaces......Page 625
20.4 Sensory Perception in the Evolving Cra......Page 626
20.4.2 Human Language and Machine Translation......Page 627
20.4.3 Situation Perception Architectures......Page 630
20.5 Quality of Information......Page 631
20.5.2 Quality: Precision and Recall......Page 632
20.5.5 Quality: Validity......Page 633
20.6.1 What Is a Policy Language?......Page 634
20.6.2 Policy Language Needs......Page 635
20.6.3 What Is Language?......Page 636
20.6.4 Cognitive Linguistics for CRPLA......Page 637
20.6.5 CRPLA Evolution......Page 638
20.7 Challenges And Opportunities......Page 640
20.8 Chapter Summary
......Page 641
Appendices: GNU radioexperimentation......Page 642
Appendix A: Essential linux commands......Page 644
B.1 Install Dependencies
......Page 646
B.2 Install an SVN Client......Page 647
B.3 Install
GR......Page 648
B.4 Set up USRP......Page 651
B.5 Test USRP......Page 652
B.6 General Installation Notes......Page 654
C.1 The Main Elements on the Usrp Board......Page 655
C.2 Data Flow on the USRP......Page 657
Appendix D: GNU radio python program structure......Page 664
Appendix F: Digital transmitter code......Page 669
Appendix G: Digital receiver code......Page 673
Appendix H: Adaptive transmitter code......Page 680
References......Page 688
Index
......Page 728