This book presents new approaches to data mining and system identification. Algorithms that can be used for the clustering of data have been overviewed. New techniques and tools are presented for the clustering, classification, regression and visualization of complex datasets. Special attention is given to the analysis of historical process data, tailored algorithms are presented for the data driven modeling of dynamical systems, determining the model order of nonlinear input-output black box models, and the segmentation of multivariate time-series. The main methods and techniques are illustrated through several simulated and real-world applications from data mining and process engineering practice.
The books is aimed primarily at practitioners, researches, and professionals in statistics, data mining, business intelligence, and systems engineering, but it is also accessible to graduate and undergraduate students in applied mathematics, computer science, electrical and process engineering. Familiarity with the basics of system identification and fuzzy systems is helpful but not required.