Keywords Spin › Electromagnetic radiation › Resonance › Nucleus › Hydrogen › Proton › Certain atomic nuclei possess inherent magnetic Let us summarize the MRI procedure. Te patient properties called spin, and can interact with electro- is placed in a magnetic feld and becomes temporarily 1 magnetic (EM) radiation through a process called magnetized. Resonance is achieved through the - resonance. When such nuclei absorb EM energy they plication of specifc pulses of EM radiation, which is proceed to an excited, unstable confguration. Upon absorbed by the patient. Subsequently, the excess - return to equilibrium, the excess energy is released, ergy is liberated and measured. Te captured signal producing the MR signal. Tese processes are not is processed by a computer and converted to a gray random, but obey predefned rules. scale (MR) image. Te simplest nucleus is that of hydrogen (H), con- Why do we need to place the patient in a m- sisting of only one particle, a proton. Because of its net? Because the earth’s magnetic feld is too weak to abundance in humans and its strong MR signal, H be clinically useful; it varies from 0. 3–0. 7 Gauss (G). is the most useful nucleus for clinical MRI. Tus, foC r urrent clinical MR systems operate at low, mid or our purposes, MRI refers to MRI of hydrogen, and for h igh feld strength ranging from 0. 1 to 3.
Author(s): Haris S. Chrysikopoulos (auth.)
Edition: 1
Publisher: Springer-Verlag Berlin Heidelberg
Year: 2009
Language: English
Pages: 176
Tags: Imaging / Radiology; Diagnostic Radiology
Front Matter....Pages I-IX
Resonance....Pages 1-1
Electromagnetic Fields....Pages 2-2
Macroscopic Magnetization....Pages 3-4
Macroscopic Magnetization Revisited....Pages 5-6
Excitation Phenomena....Pages 7-8
T1 Relaxation (Longitudinal or Spin-Lattice Relaxation)....Pages 9-10
T2 Relaxation (Transverse or Spin–Spin Relaxation)....Pages 11-12
Magnetic Substrates of T1 Relaxation....Pages 13-15
Magnetic Substrates of T2 Relaxation....Pages 16-16
Proton (Spin) Density Contrast....Pages 17-17
Partial Saturation....Pages 18-18
Free Induction Decay....Pages 19-19
Spin Echo....Pages 20-21
Integration of T1, T2, and Proton Density Phenomena....Pages 22-24
Inversion Recovery....Pages 25-27
Image Formation – Fourier Transform – Gradients....Pages 28-31
Gradient Echo Imaging....Pages 32-38
Pulse Sequences....Pages 39-39
Fast or Turbo Spin Echo Imaging....Pages 40-42
Selective Fat Suppression....Pages 43-51
Chemical Shift Imaging....Pages 52-55
Magnetization Transfer Contrast....Pages 56-61
Diffusion....Pages 62-69
Artifacts....Pages 70-80
Noise....Pages 81-81
Imaging Time....Pages 82-82
Resolution....Pages 83-84
Contrast Agents....Pages 85-89
Blood Flow....Pages 90-93
MR Angiography....Pages 94-108
Basics of MR Examinations and Interpretation....Pages 109-163
Back Matter....Pages 164-176