Click Chemistry: Approaches, Applications and Challenges

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Chen Yu, Xue Ke, Tong Zong Rui
Series: Horizons in Neuroscience Research
Publisher: Nova Science Publishers, Inc.
Year: 2017

Language: English
Pages: 379

Contents......Page 6
Abstract......Page 8
1. Development of Click Chemistry......Page 9
2. Characteristics of Click Chemistry Reaction......Page 11
3. Types of Click Chemistry Reaction......Page 12
4. Application of Click Chemistry Reaction and Its Development......Page 17
References......Page 18
Abstract......Page 28
Introduction......Page 29
1. Preparation Methods of Nitrile N-Oxide......Page 31
2. Reaction of Nitrile N-Oxide......Page 32
3. Structure of Nitrile N-Oxide......Page 37
4. Synthesis and Applications of Nitrile N-Oxide-Based Click Agents......Page 43
Acknowledgments......Page 50
References......Page 51
1. Introduction......Page 58
2.1. Condensations and Non-Catalyzed Cycloadditions......Page 60
2.2. Copper-Catalyzed Alkyne-Azide Cycloaddition......Page 61
2.3. Homocoupling Reactions......Page 69
3. Reactions of Bi-1,2,3-Triazoles......Page 70
References......Page 72
Abstract......Page 76
Introduction......Page 77
1.2. C6 Quaternary Ammonium Chitosan Derivative......Page 78
1.3. Hollow Tubes [4]-A Novel Cellulose-Click-Chitosan Polymer......Page 79
1.4. Chitosan-Oxanorbornadiene [5]......Page 80
1.5. Locating Substitution Derivatives......Page 81
1.6. Regioselective Sequential Modification of Chitosan......Page 82
1.7. Side-Chain Type Benzoxazine-Functional Cellulose [8]......Page 84
1.8. Linking Cellulose and Clay......Page 85
1.10. Side-Chain Modification of Dextran derivatives......Page 86
1.11. Facile synthesis of β-Cyclodextrin-Dextran Derivatives Polymers [15]......Page 87
1.13. Grafting of Oligocaprolactones onto Starch Backbone......Page 88
2.1. Chitosan/Hyaluronan Hydrogels [21]......Page 89
2.2. Furan Chitosan Hydrogels [22]......Page 90
2.3. Hyaluronic Acid Hydrogels for Tissue Engineering......Page 91
2.6. Emulating the Extracellular Matrix by hyaluronic acid......Page 92
2.8. Biological Hydrogel......Page 94
2.10. Hydrogel Tissue Engineering Scaffolds......Page 95
2.12. Alginate Hydrogels [32]......Page 96
3. Click Chemistry Application of Natural Polymers Nanomaterials......Page 97
3.2. Grafting Chitosan on the Surface of Hydroxyapatite Nanoparticles [34]......Page 98
3.3. Cellulose Nanocrystals......Page 99
3.5. Functionalized Cellulose Nanocrystals [37]......Page 100
3.6. Nano- and Microfibrillar Cellulose......Page 101
3.7. Thiol-yne Click on Nano-Starch [39]......Page 102
4.1. Multicolor Fluorescent Labeling of Cellulose Nanofibril......Page 103
4.3. Fluorescent Hyperbranched Polymeric Sensors [43]......Page 104
4.4. A Turn-on Fluorescent Probe for Specific Detection of Cysteine......Page 105
5.1. Surface Modification of Silk Fibroin Films......Page 106
6. Prospect......Page 107
References......Page 108
Abstract......Page 114
1. Hydrogels Prepared from Azide-Alkyne Cycloaddition catalyzed by Cu (I)......Page 115
2. Hydrogels Prepared from Thiol-ene Photo Coupling......Page 120
3. Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC)......Page 124
4.1. Common Diels-Alder Reaction......Page 132
4.2. Special Diels-Alder Reactions......Page 134
4.3. Thiol-yne Reaction......Page 136
4.4. Thiol-Michael Reaction......Page 137
References......Page 140
Abstract......Page 146
1. The preparation of elastomers and rubber with “click” reaction......Page 147
1.1 Using of Alkyne-azide Reaction......Page 148
1.2 Using of thiol-ene reaction......Page 150
1.3 Others reactions and applications......Page 155
2. Using of “click” reaction on surface modification of elastomer......Page 157
Conclusion......Page 160
References......Page 161
Abstract......Page 164
1. Introduction......Page 165
3. Key Features of Monoliths......Page 167
4. Key Features of Click Chemistry......Page 169
4.1. Copper-Catalyzed Azide-Alkyne Huisgen Dipolar Cycloaddition Reaction (CuAAC)......Page 172
4.2. Thiol-Ene (TEC) and Thiol-Yne (TYC) Coupling Chemistries......Page 173
4.3. Thiol-(Meth)Acrylate Reaction......Page 175
4.4. Thiol-Epoxy Click Coupling......Page 176
4.5. Diels-Alder Click Coupling......Page 177
5.1. Click Chemistry for the Preparation of Monoliths......Page 178
5.2. Synthesis of Clickable Monoliths......Page 185
5.3. Click Chemistry for the Surface Functionalization of Monoliths......Page 192
6.1. Clicked Monoliths for (Electro)Chromatographic Separation Science......Page 197
6.2. Clicked Monoliths for Sample Pretreatment Technology......Page 203
6.3. Clicked Monoliths for Micro-Reactor Science and Technology......Page 205
References......Page 210
Abstract......Page 218
Click Chemistry......Page 219
Click Chemistry Reaction Types......Page 220
Membrane Technology......Page 223
Advantages of Membrane Surface Modification......Page 224
Membrane Modification with Click Chemistry......Page 225
Acknowledgments......Page 231
References......Page 232
Abstract......Page 242
Introduction......Page 243
Click on Carbon Nanostructures......Page 245
Fullerenes......Page 246
Carbon Nanotubes......Page 253
Graphene......Page 258
Click on Small Polycyclic Aromatic Hydrocarbon......Page 262
Pyrene......Page 263
Perylene......Page 268
Corannulene......Page 272
Conclusion......Page 273
References......Page 274
Abstract......Page 288
1.1. The Role of Click Chemistry in the Research of Chemical Sensor......Page 289
1.2. The Application of Chemical Sensor Based on Click Chemistry......Page 290
2. The Application of Click Chemistry in Gene Transfer Carrier......Page 294
3. Application of Click Chemistry in Pharmaceutical Science......Page 299
3.1.2. Fragment-Based Drug Discovery......Page 301
3.1.3. Dynamic Template-Assisted Strategies in Fragment-Based Drug Discovery......Page 303
3.2.1. Protein Tyrosine Phosphatase Inhibitors......Page 305
3.2.2. Protein Kinase Inhibitors......Page 307
3.3. Click Chemistry in Drug Development Using Fragment-Based Drug Discovery......Page 309
References......Page 311
Abstract......Page 320
1. Introduction......Page 321
2.1.1. Copper(I) Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Reaction......Page 324
2.1.2. CuAAC Reaction in DNAs and Proteins Detection......Page 325
2.1.3. CuAAC Reaction in Small Biomolecules Sensing......Page 327
2.1.4. CuAAC Reaction In Vivo Sensing......Page 329
2.2. Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) Reaction......Page 330
2.2.1. SPAAC Reaction in DNAs Analysis......Page 331
2.2.2. SPAAC Reaction in Proteins and Pathogens Detection......Page 332
2.2.3. SPAAC Reaction in Cells Detection......Page 333
2.3. Thiol-ene Reaction......Page 334
2.3.1. Thiol-ene Reaction in DNAs and Proteins Detection......Page 335
2.3.2. Thiol-ene Reaction in Small Biomolecules Detection......Page 336
2.4.1. Oxime Ligation......Page 337
2.4.2. Diels-Alder Reaction......Page 338
Conclusion and Outlooks......Page 339
Acknowledgments......Page 340
References......Page 341
Abstract......Page 354
Introduction......Page 355
2.1. Materials......Page 356
2.4. Propellant Processing......Page 357
2.5.1. Synthesis of Propargyloxy Terminated Polybutadiene (PTPB)......Page 358
3.1. Curing Characteristics of PTPB......Page 360
3.2. Mechanical Properties......Page 362
3.4. Thermal Decomposition Studies......Page 363
3.5.1. Thermochemical Measurements......Page 366
3.5.2. Propellant Processabiity, Mechanical Properties, Thermal Decomposition and Burn Rate......Page 367
Acknowledgment......Page 369
References......Page 370
Editor Contact Information......Page 374
Index......Page 376
Blank Page......Page 0