Classical Mechanics: Systems of Particles and Hamiltonian Dynamics

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems.

The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics.

The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.

Author(s): Walter Greiner (auth.)
Edition: 2
Publisher: Springer-Verlag Berlin Heidelberg
Year: 2010

Language: English
Pages: 580
Tags: Mechanics;Theoretical and Applied Mechanics;Applications of Mathematics;Mathematical Methods in Physics;Dynamical Systems and Ergodic Theory

Front Matter....Pages I-XVIII
Front Matter....Pages 1-1
Newton’s Equations in a Rotating Coordinate System....Pages 3-8
Free Fall on the Rotating Earth....Pages 9-21
Foucault’s Pendulum....Pages 23-38
Front Matter....Pages 39-39
Degrees of Freedom....Pages 41-42
Center of Gravity....Pages 43-64
Mechanical Fundamental Quantities of Systems of Mass Points....Pages 65-77
Front Matter....Pages 79-79
Vibrations of Coupled Mass Points....Pages 81-100
The Vibrating String....Pages 101-120
Fourier Series....Pages 121-131
The Vibrating Membrane....Pages 133-157
Front Matter....Pages 159-159
Rotation About a Fixed Axis....Pages 161-183
Rotation About a Point....Pages 185-207
Theory of the Top....Pages 209-256
Front Matter....Pages 257-257
Generalized Coordinates....Pages 259-265
D’Alembert Principle and Derivation of the Lagrange Equations....Pages 267-299
Lagrange Equation for Nonholonomic Constraints....Pages 301-310
Special Problems....Pages 311-324
Front Matter....Pages 325-325
Hamilton’s Equations....Pages 327-364
Canonical Transformations....Pages 365-382
Hamilton–Jacobi Theory....Pages 383-413
Front Matter....Pages 325-325
Extended Hamilton–Lagrange Formalism....Pages 415-453
Extended Hamilton–Jacobi Equation....Pages 455-459
Front Matter....Pages 461-462
Dynamical Systems....Pages 463-483
Stability of Time-Dependent Paths....Pages 485-493
Bifurcations....Pages 495-501
Lyapunov Exponents and Chaos....Pages 503-516
Systems with Chaotic Dynamics....Pages 517-551
Front Matter....Pages 553-553
Emergence of Occidental Physics in the Seventeenth Century....Pages 555-574
Back Matter....Pages 575-579