Classical Algebraic Geometry: a modern view

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Igor V. Dolgachev
Edition: 0
Publisher: Cambridge University Press
Year: 2011

Language: English
Commentary: Vector PDF, from author's website, commented as "(final version,to be published by the Cambride Univ. Press)"
Pages: 723

The polar pairing......Page 13
First polars......Page 19
Polar quadrics......Page 25
The Hessian hypersurface......Page 27
Parabolic points......Page 30
The Steinerian hypersurface......Page 33
The Jacobian hypersurface......Page 37
The polar map......Page 44
Dual varieties......Page 45
Plücker formulas......Page 49
Apolar schemes......Page 52
Sums of powers......Page 54
Generalized polar s-hedra......Page 56
Secant varieties and sums of powers......Page 57
The Waring problems......Page 64
Catalecticant matrices......Page 66
Dual homogeneous forms......Page 69
The Waring rank of a homogeneous form......Page 70
Mukai's skew-symmetric form......Page 71
Harmonic polynomials......Page 75
Binary forms......Page 80
Quadrics......Page 82
Exercises......Page 85
Historical Notes......Page 87
Veronese quartic surfaces......Page 89
Polar lines......Page 91
The variety of self-polar triangles......Page 93
Conjugate triangles......Page 97
Darboux's Theorem......Page 103
Poncelet curves and vector bundles......Page 108
Complex circles......Page 111
Polar properties of quadrics......Page 114
Invariants of a pair of quadrics......Page 120
Invariants of a pair of conics......Page 124
The Salmon conic......Page 129
Exercises......Page 133
Historical Notes......Page 137
Elliptic curves......Page 139
The Hesse equation......Page 143
The Hesse pencil......Page 145
The Hesse group......Page 146
The Hessian of a cubic hypersurface......Page 150
The Hessian of a plane cubic......Page 151
The dual curve......Page 155
Polar s-gons......Page 156
Projective generation......Page 161
Projective generation of a plane cubic......Page 163
Mixed concomitants......Page 164
Clebsch's transfer principle......Page 165
Invariants of plane cubics......Page 167
Exercises......Page 169
Historical Notes......Page 172
The problem......Page 174
Plane curves......Page 175
The symmetric case......Page 180
Contact curves......Page 182
First examples......Page 186
The moduli space......Page 188
Determinantal varieties......Page 190
Arithmetically Cohen-Macaulay sheaves......Page 194
Symmetric and skew-symmetric aCM sheaves......Page 199
Singular plane curves......Page 201
Linear determinantal representations of surfaces......Page 209
Symmetroid surfaces......Page 213
Exercises......Page 217
Historical Notes......Page 219
First definitions and examples......Page 221
Quadratic forms over a field of characteristic 2......Page 222
Equations of hyperelliptic curves......Page 225
2-torsion points on a hyperelliptic curve......Page 226
Theta characteristics on a hyperelliptic curve......Page 228
Families of curves with odd or even theta characteristic......Page 230
Jacobian variety......Page 231
Theta functions......Page 234
Hyperelliptic curves again......Page 236
Syzygetic triads......Page 238
Steiner complexes......Page 241
Fundamental sets......Page 245
Correspondences on an algebraic curve......Page 248
Scorza correspondence......Page 252
Scorza quartic hypersurfaces......Page 255
Contact hyperplanes of canonical curves......Page 257
Historical Notes......Page 261
28 bitangents......Page 263
Aronhold sets......Page 265
Riemann's equations for bitangents......Page 268
Quadratic determinantal representations......Page 273
Symmetric quadratic determinants......Page 277
Contact cubics......Page 282
Cayley octads......Page 284
Seven points in the plane......Page 287
The Clebsch covariant quartic......Page 291
Clebsch and Lüroth quartics......Page 295
A Fano model of VSP(f,6)......Page 304
Invariant theory of plane quartics......Page 306
Automorphisms of finite order......Page 308
Automorphism groups......Page 311
The Klein quartic......Page 314
Exercises......Page 318
Historical Notes......Page 320
Linear systems and their base schemes......Page 323
Resolution of a rational map......Page 325
The graph of a Cremona transformation......Page 328
F-locus and P-locus......Page 330
Computation of the multidegree......Page 335
Quadro-quadratic transformations......Page 339
Bilinear Cremona transformations......Page 341
de Jonquières transformations......Page 346
Exceptional configurations......Page 349
The bubble space of a surface......Page 353
Nets of isologues and fixed points......Page 356
Quadratic transformations......Page 361
Symmetric Cremona transformations......Page 363
de Jonquières transformations and hyperelliptic curves......Page 365
Minimal rational ruled surfaces......Page 368
Elementary transformations......Page 371
Birational automorphisms of P1P1......Page 373
Characteristic matrices......Page 378
The Weyl groups......Page 384
Noether-Fano inequality......Page 388
Noether's Factorization Theorem......Page 389
Exercises......Page 393
Historical Notes......Page 395
Surfaces of degree d in Pd......Page 398
Rational double points......Page 402
A blow-up model of a del Pezzo surface......Page 404
Quadratic lattices......Page 410
The EN-lattice......Page 413
Roots......Page 414
Fundamental weights......Page 420
Gosset polytopes......Page 422
(-1)-curves on del Pezzo surfaces......Page 424
Effective roots......Page 427
Cremona isometries......Page 430
Anticanonical linear systems......Page 434
Anticanonical model......Page 439
Del Pezzo surfaces of degree 7,8,9......Page 441
Del Pezzo surfaces of degree 6......Page 442
Lines and singularities......Page 445
Equations......Page 446
OADP varieties......Page 448
Automorphism group......Page 449
Equations......Page 453
Cyclid quartics......Page 456
Lines and singularities......Page 458
Automorphisms......Page 460
Singularities......Page 463
Geiser involution......Page 466
Automorphisms of del Pezzo surfaces of degree 2......Page 469
Singularities......Page 470
Bertini involution......Page 472
Rational elliptic surfaces......Page 474
Automorphisms of del Pezzo surfaces of degree 1......Page 475
Exercises......Page 482
Historical Notes......Page 483
More about the E6-lattice......Page 487
Lines and tritangent planes......Page 494
Schur's quadrics......Page 498
Eckardt points......Page 503
Non-normal cubic surfaces......Page 506
Lines and singularities......Page 507
Cayley-Salmon equation......Page 513
Hilbert-Burch Theorem......Page 516
Cubic symmetroids......Page 520
Sylvester's pentahedron......Page 524
The Hessian surface......Page 527
Cremona's hexahedral equations......Page 529
The Segre cubic primal......Page 532
Moduli spaces of cubic surfaces......Page 545
Cyclic groups of automorphisms......Page 550
Maximal subgroups of W(E6)......Page 559
Groups of automorphisms......Page 561
The Clebsch diagonal cubic......Page 567
Exercises......Page 572
Historical Notes......Page 574
Generalities about Grassmannians......Page 578
Schubert varieties......Page 581
Secant varieties of Grassmannians of lines......Page 584
Linear line complexes and apolarity......Page 589
6 lines......Page 596
Linear systems of linear line complexes......Page 601
Generalities......Page 604
Intersection of 2 quadrics......Page 608
Kummer surfaces......Page 610
Harmonic complex......Page 622
The tangential line complex......Page 627
Tetrahedral line complex......Page 629
Scrolls......Page 633
Cayley-Zeuthen formulas......Page 637
Developable ruled surfaces......Page 646
Quartic ruled surfaces in P3......Page 653
Ruled surfaces in P3 and the tetrahedral line complex......Page 666
Exercises......Page 668
References......Page 670
Index......Page 673