Change and motion define and constantly reshape the world around us, on scales from the molecular to the global. In particular, the subtle interplay between chemical reactions and molecular transport gives rise to an astounding richness of natural phenomena, and often manifests itself in the emergence of intricate spatial or temporal patterns. The underlying theme of this book is that by “setting chemistry in motion” in a proper way, it is not only possible to discover a variety of new phenomena, in which chemical reactions are coupled with diffusion, but also to build micro-/nanoarchitectures and systems of practical importance. Although reaction and diffusion (RD) processes are essential for the functioning of biological systems, there have been only a few examples of their application in modern micro- and nanotechnology. Part of the problem has been that RD phenomena are hard to bring under experimental control, especially when the system’s dimensions are small. Ultimately this book will guide the reader through all the aspects of these systems – from understanding the basics to practical hints and then to applications and interpretation of results.
Topics covered include:
- An overview and outlook of both biological and man-made reaction-diffusion systems.
- The fundamentals and mathematics of diffusion and chemical reactions.
- Reaction-diffusion equations and the methods of solving them.
- Spatial control of reaction-diffusion at small scales.
- Micro- and nanofabrication by reaction-diffusion.
- Chemical clocks and periodic precipitation structures.
- Reaction-diffusion in soft materials and at solid interfaces.
- Microstructuring of solids using RD.
- Reaction-diffusion for chemical amplification and sensing.
- RD in three dimensions and at the nanoscale, including nanosynthesis.
This book is aimed at all those who are interested in chemical processes at small scales, especially physical chemists, chemical engineers, and material scientists. The book can also be used for one-semester, graduate elective courses in chemical engineering, materials science, or chemistry classes.
Author(s): Bartosz A. Grzybowski
Publisher: Wiley
Year: 2009
Language: English
Pages: 305
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;
Chemistry in Motion: Reaction–Diffusion Systems for Micro- and Nanotechnology......Page 2
Contents......Page 10
Preface......Page 14
List of Boxed Examples......Page 16
1.1 HISTORICAL PERSPECTIVE......Page 18
1.2 WHAT LIES AHEAD?......Page 20
1.3 HOW NATURE USES RD......Page 21
1.3.1 Animate Systems......Page 22
1.3.2 Inanimate Systems......Page 25
1.4 RD IN SCIENCE AND TECHNOLOGY......Page 26
REFERENCES......Page 29
2.1 DIFFUSION EQUATION......Page 34
2.2.1 Separation of Variables......Page 37
2.2.2 Laplace Transforms......Page 43
2.3 THE USE OF SYMMETRY AND SUPERPOSITION......Page 48
2.4 CYLINDRICAL AND SPHERICAL COORDINATES......Page 51
2.5 ADVANCED TOPICS......Page 55
REFERENCES......Page 60
3.1 REACTIONS AND RATES......Page 62
3.2 CHEMICAL EQUILIBRIUM......Page 67
3.3 IONIC REACTIONS AND SOLUBILITY PRODUCTS......Page 68
3.4 AUTOCATALYSIS, COOPERATIVITY AND FEEDBACK......Page 69
3.5 OSCILLATING REACTIONS......Page 72
3.6 REACTIONS IN GELS......Page 74
REFERENCES......Page 76
4.1 GENERAL FORM OF REACTION–DIFFUSION EQUATIONS......Page 78
4.2 RD EQUATIONS THAT CAN BE SOLVED ANALYTICALLY......Page 79
4.3.1 Finite Difference Methods......Page 83
4.3.2 Finite Element Methods......Page 87
4.4 TEMPORAL DISCRETIZATION AND INTEGRATION......Page 97
4.4.1.2 Backward time centered space (BTCS) differencing......Page 98
4.4.1.3 Crank–Nicholson method......Page 99
4.4.2.1 Operator splitting method......Page 100
4.4.2.2 Method of lines......Page 101
4.4.3 Dealing with Precipitation Reactions......Page 103
4.6 MESOSCOPIC MODELS......Page 104
REFERENCES......Page 107
5 Spatial Control of Reaction–Diffusion at Small Scales: Wet Stamping (WETS)......Page 110
5.1 CHOICE OF GELS......Page 111
5.2 FABRICATION......Page 115
5A.2 Agarose Molding......Page 118
REFERENCES......Page 119
6.1 MICROFABRICATION: THE SIMPLE AND THE DIFFICULT......Page 120
6.2 FABRICATING ARRAYS OF MICROLENSES BY RD AND WETS......Page 122
6.3 INTERMEZZO: SOME THOUGHTS ON RATIONAL DESIGN......Page 126
6.4 GUIDING MICROLENS FABRICATION BY LATTICE GAS MODELING......Page 128
6.5 DISJOINT FEATURES AND MICROFABRICATION OF MULTILEVEL STRUCTURES......Page 134
6.6 MICROFABRICATION OF MICROFLUIDIC DEVICES......Page 138
REFERENCES......Page 141
7.1 PERIODIC PRECIPITATION......Page 144
7.2 PHENOMENOLOGY OF PERIODIC PRECIPITATION......Page 145
7.3 GOVERNING EQUATIONS......Page 147
7.4 MICROSCOPIC PP PATTERNS IN TWO DIMENSIONS......Page 154
7.4.1 Feature Dimensions and Spacing......Page 156
7.4.2 Gel Thickness......Page 157
7.4.4 Concentration of the Outer and Inner Electrolytes......Page 159
7.5 TWO-DIMENSIONAL PATTERNS FOR DIFFRACTIVE OPTICS......Page 162
7.6 BUCKLING INTO THE THIRD DIMENSION: PERIODIC ‘NANOWRINKLES’......Page 169
7.7 TOWARD THE APPLICATIONS OF BUCKLED SURFACES......Page 172
7.8 PARALLEL REACTIONS AND THE NANOSCALE......Page 175
REFERENCES......Page 177
8.1 DEPOSITION OF METAL FOILS AT GEL INTERFACES......Page 182
8.1.1 RD in the Plating Solution: Film Topography......Page 184
8.1.2 RD in Gel Substrates: Film Roughness......Page 189
8.2.1 Etching Equations......Page 195
8.2.1.1 Gold etching......Page 197
8.2.2 Structuring Metal Films......Page 198
8.2.3 Microetching Transparent Conductive Oxides, Semiconductors and Crystals......Page 203
8.2.4 Imprinting Functional Architectures into Glass......Page 206
REFERENCES......Page 209
9 Micro-chameleons: Reaction–Diffusion for Amplification and Sensing......Page 212
9.1 AMPLIFICATION OF MATERIAL PROPERTIES BY RD MICRONETWORKS......Page 214
9.2 AMPLIFYING MACROMOLECULAR CHANGES USING LOW-SYMMETRY NETWORKS......Page 220
9.3 DETECTING MOLECULAR MONOLAYERS......Page 222
9.4 SENSING CHEMICAL ‘FOOD’......Page 225
9.4.1 Oscillatory Kinetics......Page 228
9.4.2 Diffusive Coupling......Page 229
9.4.3 Wave Emission and Mode Switching......Page 230
9.5 EXTENSIONS: NEW CHEMISTRIES, APPLICATIONS AND MEASUREMENTS......Page 232
REFERENCES......Page 239
10 Reaction–Diffusion in Three Dimensions and at the Nanoscale......Page 244
10.1.1 Making Spheres Inside of Cubes......Page 245
10.1.2 Modeling of 3D RD......Page 247
10.1.3 Fabrication Inside of Complex-Shape Particles......Page 252
10.1.4 ‘Remote’ Exchange of the Cores......Page 253
10.1.5 Self-Assembly of Open-Lattice Crystals......Page 255
10.2 DIFFUSION IN SOLIDS: THE KIRKENDALL EFFECT AND FABRICATION OF CORE–SHELL NANOPARTICLES......Page 257
10.3 GALVANIC REPLACEMENT AND DE-ALLOYING REACTIONS AT THE NANOSCALE: SYNTHESIS OF NANOCAGES......Page 265
REFERENCES......Page 270
11 Epilogue: Challenges and Opportunities for the Future......Page 274
REFERENCES......Page 280
Appendix A: Nature’s Art......Page 282
Appendix B: Matlab Code for the Minotaur (Example 4.1)......Page 288
Appendix C: C++ Code for the Zebra (Example 4.3)......Page 292
Index......Page 300