Intracellular checkpoint controls constitute a network of signal transduction pathways that protect cells from external stresses and internal errors by means of cell cycle arrest, DNA repair, or apoptosis. Failure of this machinery can lead to embryonic death, genetic diseases, and cancer. In Checkpoint Controls and Cancer, Volume 1: Reviews and Model Systems, Axel H. Schönthal, PhD, marshals a prestigious panel of researchers working at the cutting edges of their fields to comprehensively review the complexities of checkpoint controls and the model systems available to study them. The authors introduce all of the important components of checkpoint controls, describe their intricate interactions, and highlight the relevance of these processes to the cancer problem. Additional chapters illustrate the advantages of using such diverse model systems as intact human skin, knockout mice, Xenopus, and yeast, and show how they can cross-fertilize and accelerate research both across disciplines and beyond the boundaries of a particular species. A second volume, Activation and Regulation Protocols, provides readily reproducible experimental protocols for studying the molecular components of checkpoint controls and their regulation.
Comprehensive and up-to-date, the two volumes of Checkpoint Controls and Cancer offer novice and experienced researchers alike not only entré into the complexities of this vast field, but also to the full panoply of productive tools needed to deepen understanding of the systems, as well as to develop new and more effective cancer therapies.