Despite the assistance provided by electronic control systems, the latest generation of passenger car chassis still relies heavily on conventional chassis elements. This book examines these conventional elements and their interactions with mechatronic systems within the context of driving dynamics. Chassis fundamentals and design are described in the initial chapters, followed by a practical examination of driving dynamics and detailed descriptions and explanations of modern chassis components. A separate section is devoted to axles and the processes used during axle development. This first English edition features a number of improvements over the latest German edition, including revised illustrations and several updates in the text and list of references.
Author(s): Bernd Heiring, Metin Ersoy (Eds.)
Publisher: Vieweg and Teubner
Year: 2010
Language: English
Pages: 591
Cover
......Page 1
Chassis Handbook
......Page 4
Copyright
......Page 5
Preface......Page 6
Contributors......Page 8
Contents......Page 10
1 Introduction and Fundamentals......Page 26
1.1.1 History......Page 27
1.1.2 Definition and Scope......Page 32
1.1.3 Purpose and Significance......Page 33
1.2.1 Vehicle Classification......Page 34
1.2.2 Powertrain Configurations......Page 35
1.2.4 Trends in Chassis Composition......Page 38
1.3 Chassis Layout......Page 40
1.3.1 Chassis Requirements......Page 41
1.3.3.1 Suspension Parameters Relative to Vehicle......Page 43
1.3.3.3 Wheel Travel......Page 45
1.3.3.4 Wheel Travel Parameters......Page 46
1.3.3.5 Steering Kinematic Parameters......Page 49
1.3.3.7 Wheel Travel Curves......Page 53
1.3.4 Elastokinematics and Component Compliances in Suspension Design......Page 56
1.3.5 Target Parameter Values......Page 57
1.3.6 Suspension Composition......Page 58
2.1.1.1 Rolling Resistance......Page 60
2.1.1.2 Effect of Road Surface on Rolling Resistance FR,Tr......Page 65
2.1.1.3 Aerodynamic Drag FA......Page 68
2.1.1.4 Climbing Resistance FC......Page 69
2.1.1.5 Inertial Resistance FI......Page 70
2.1.2 Crosswind Response Behavior......Page 71
2.1.3 Performance and Energy Requirements......Page 74
2.1.4 Fuel Consumption......Page 75
2.2 Tire Traction and Force Transfer to the Roadway......Page 77
2.2.1 The Physics of Tire Traction and Force Transfer......Page 79
2.2.1.1 Acceleration and Braking......Page 82
2.2.1.2 Cornering......Page 83
2.2.2 Detailed Tire Forces......Page 88
2.3.1.1 Anti-Dive......Page 90
2.3.1.2 Anti-Lift (Anti-Squat)......Page 91
2.4.1 Springs......Page 92
2.4.1.2 Natural (Eigen) Frequencies......Page 93
2.4.2 Vibration Dampers......Page 94
2.4.3.1 Harmonic Excitations......Page 95
2.4.3.3 Stochastic (Random) Irregularities......Page 96
2.4.3.4 Spectral Density of Road Surface Irregularities......Page 97
2.4.4 Tires as Spring/Damper Elements......Page 98
2.4.5.1 Single-Mass System......Page 99
2.4.5.3 Expansion of the Model to Include Seat Suspension Effects......Page 100
2.4.5.4 Single-Track Suspension Model......Page 101
2.4.5.5 Two-Track Suspension Model......Page 102
2.4.6 Parameter Variation......Page 104
2.4.7 The Roadway/Vehicle Connection......Page 106
2.4.7.1 Spectral Density of Vehicle Body Accelerations......Page 107
2.4.8 Human Oscillation Evaluation......Page 109
2.5.1 Handling Requirements......Page 111
2.5.2.1 Static Steering Layout......Page 112
2.5.2.2 Dynamic Steering Layout......Page 113
2.5.3.1 Simple Single-Track (Bicycle) Model......Page 114
2.5.3.2 Simple Vehicle Dynamics......Page 115
2.5.3.3 Understeer and Oversteer......Page 118
2.5.3.4 Expanded Single-Track Model with Rear-Wheel Steering......Page 119
2.5.3.5 Nonlinear Single-Track Model......Page 120
2.5.3.6 Analysis of Transient Behavior Using the Simple Single-Track Model......Page 122
2.5.3.7 The Vehicle as Part of a Closed-Loop System......Page 124
2.5.3.8 Dynamic Behavior of the Vehicle as Part of a Closed-Loop System......Page 125
2.5.3.9 Slip Angle Compensation Using Rear-Wheel Steering......Page 128
2.5.3.10 Investigation of Frequency Response for Varied Vehicle Configurations......Page 130
2.5.3.11 Dual-Track Model......Page 131
2.5.3.12 Parameter Variation......Page 134
2.6.1 Interactions between Vertical, Longitudinal, and Lateral Dynamics......Page 138
2.7.2 Limitations of the Passive Vehicle – Basic Goal Conflicts......Page 143
2.7.3 The Driver-Vehicle Control Loop......Page 144
2.7.4.1 Longitudinal Dynamics......Page 145
2.7.5 Requirements for Chassis Control Systems......Page 146
2.8.1 Handling Evaluation......Page 147
2.8.3 Parameter Range of Maneuvers......Page 149
2.8.5 Subjective Handling Evaluation......Page 152
2.8.5.3 Braking Behavior......Page 155
2.8.5.4 Steering Behavior......Page 157
2.8.5.6 Straightline Driving Behavior......Page 159
2.8.5.7 Ride Comfort......Page 161
2.8.6.2 Acceleration (Driveoff) Behavior......Page 162
2.8.6.3 Braking Behavior......Page 163
2.8.6.4 Steering Behavior......Page 164
2.8.6.5 Cornering Behavior......Page 166
2.8.6.6 Straightline Driving Behavior......Page 168
2.9 Active and Passive Safety......Page 170
3.1.1 Classification by Function......Page 174
3.1.3 Chassis Components......Page 175
3.2.2.2 Locking Differentials......Page 176
3.2.2.4 Torque Vectoring......Page 178
3.2.3 Four-wheel-drive (All-wheel-drive)......Page 179
3.2.4 Control Strategies......Page 180
3.2.5 Half-shafts......Page 181
3.3.1 Fundamentals and Requirements......Page 182
3.3.2 Types of Braking Systems......Page 183
3.3.2.1 General Requirements......Page 184
3.3.4.1 Brake Force Distribution......Page 185
3.3.5.1 Braking Torque......Page 187
3.3.5.2 Braking Dynamics......Page 188
3.3.6.1 Brake Calipers......Page 189
3.3.6.2 Brake Discs......Page 193
3.3.6.4 Drum Brakes......Page 194
3.3.6.6 Brake Force Booster......Page 197
3.3.6.8 Human-Machine Interface (HMI)......Page 198
3.3.7.1 Brake Assistant (MBA, EBA, HBA)......Page 202
3.3.7.2 Wheel Speed Sensors......Page 205
3.3.7.3 Electronic Braking System Functions......Page 206
3.3.7.4 Electrohydraulic Brake (EHB)......Page 212
3.3.7.5 Electromechanical Brake (EMB)......Page 213
3.3.7.6 Networked Chassis......Page 215
3.4.1 Requirements and Designs......Page 216
3.4.2.1 Technology and Function......Page 219
3.4.2.2 Design and Components......Page 222
3.4.3 Steering Tie Rods......Page 225
3.4.4.1 Components and Function Modules......Page 228
3.4.4.2 Design and Testing......Page 230
3.4.4.3 Crash Requirements and Energy Absorption Mechanisms......Page 231
3.4.5.1 Design Concepts......Page 234
3.4.5.2 Configuration and Advantages......Page 237
3.4.6.1 Functional Principles and Configuration......Page 240
3.4.6.2 Functions – Present and Future......Page 242
3.4.7 Rack and Pinion Power Steering with Torque and Angle Actuators......Page 244
3.4.8 Rear-wheel and Four-wheel Steering Systems......Page 245
3.4.9 Steer-by-wire and Single-wheel Steering Systems......Page 247
3.4.9.1 System Configuration and Components......Page 248
3.4.9.2 Technology, Advantages, Opportunities......Page 250
3.5.2 Design and Calculation of Steel Springs......Page 251
3.5.2.1 Leaf Springs......Page 252
3.5.2.2 Torsion Bar Springs......Page 255
3.5.2.3 Stabilizers......Page 256
3.5.2.4 Coil Springs......Page 264
3.5.3 Spring Materials......Page 272
3.5.4.1 Hot Forming......Page 274
3.5.4.3 Cold Forming......Page 276
3.5.4.4 Shot Peening......Page 277
3.5.4.6 Corrosion Protection......Page 278
3.5.5.1 Passive Stabilizers......Page 279
3.5.5.4 Semi-Active Stabilizers......Page 280
3.5.6.1 Purpose and Configurations......Page 282
3.5.6.2 Leveling Using a Gas Spring......Page 283
3.5.7.1 Self-Pumping Hydropneumatic Spring/Damper Elements......Page 286
3.5.8 Air Springs......Page 289
3.6.1 The Purpose of Damping......Page 291
3.6.2.1 Twin-Tube Shock Absorbers......Page 295
3.6.2.3 Comparison of Damper Types......Page 296
3.6.3 Coilover Shock Absorber and Strut......Page 297
3.6.4 Shock Absorber Calculations......Page 299
3.6.5.1 Rebound and Compression Bump Stops......Page 300
3.6.5.2 Stroke-Dependent Damping......Page 302
3.6.5.3 Amplitude-Selective Damping......Page 304
3.6.6 Damper End Mounts......Page 305
3.6.7 Semi-Active Damping and Spring Functions......Page 306
3.6.8.1 Magneto-Rheological (MRF) Dampers......Page 310
3.6.8.3 Load-Dependent Damping (PDC)......Page 311
3.7.1 Purpose, Requirements, and System Structure......Page 312
3.7.2 Suspension Links: Purpose, Requirements, and System Structure......Page 313
3.7.2.1 Control Arms (Control Links)......Page 314
3.7.2.3 Auxiliary Links......Page 315
3.7.2.5 Suspension Link Materials......Page 316
3.7.2.6 Suspension Link Manufacturing Processes......Page 317
3.7.2.7 Manufacturing Methods for Aluminum Suspension Links......Page 323
3.7.2.9 Integration of the Joints into the Link......Page 325
3.7.3 Ball Joints......Page 326
3.7.3.2 Types of Ball Joints......Page 327
3.7.3.3 Ball Joint Components......Page 328
3.7.3.4 Bearing System (Ball Race, Grease)......Page 331
3.7.3.5 Sealing System (Sealing Boot, Retaining Ring)......Page 334
3.7.3.6 Suspension Ball Joints......Page 337
3.7.3.7 Preloaded Ball Joints......Page 338
3.7.3.8 Cross Axis Ball Joints......Page 339
3.7.4.1 Purpose, Requirements, and Function......Page 341
3.7.4.2 Types of Rubber Bushings......Page 343
3.7.5 Pivot Joints......Page 345
3.7.6 Rotational Sliding Joints (Trunnion Joints)......Page 346
3.7.7.2 Types and Designs......Page 347
3.8.1 Types of Wheel Carriers......Page 350
3.8.2 Wheel Carrier Materials and Manufacturing Methods......Page 352
3.8.3 Types of Wheel Bearings......Page 353
3.8.3.2 Lubrication......Page 356
3.8.3.3 ABS Sensors......Page 357
3.8.4.1 Rings and Flanges......Page 359
3.8.5 Requirements, Design, and Testing......Page 360
3.8.5.1 Bearing Rotational Fatigue Strength......Page 362
3.8.5.2 Component Strength and Tilt Stiffness......Page 364
3.8.5.3 Verification by Testing......Page 366
3.8.6 Future Prospects......Page 367
3.9.1.1 Properties and Performance......Page 371
3.9.1.2 Legal Requirements......Page 373
3.9.2.1 Tire Types......Page 374
3.9.2.3 Tire Materials......Page 375
3.9.2.4 The Viscoelastic Properties of Rubber......Page 376
3.9.3.1 Supporting Force......Page 377
3.9.3.2 Adhesion Behavior and Lateral Force Buildup......Page 378
3.9.3.4 Sideslip, Lateral Forces, and Aligning Moments......Page 379
3.9.3.5 Sideslip Stiffness......Page 380
3.9.3.6 Tire Behavior under Slip......Page 382
3.9.4.1 Tire Models for Lateral Dynamics......Page 383
3.9.4.3 Tire Models for Vertical Dynamics......Page 385
3.9.4.5 Cavity Natural Frequencies......Page 386
3.9.4.6 Full Tire Models......Page 387
3.9.5.1 Tire Sensors......Page 389
3.9.5.2 Run-Flat Tires......Page 391
3.9.5.3 Tires and Control Systems......Page 392
3.9.5.4 High Performance (HP) and Ultra High Performance (UHP) Tires......Page 393
3.9.6.1 Subjective Test Procedures......Page 394
3.9.6.2 Objective Test Procedures for Longitudinal Adhesion......Page 395
3.9.6.3 Objective Test Procedures for Lateral Adhesion......Page 396
3.9.7.1 Basic Tire Test Rig Designs......Page 397
3.9.7.4 Measuring Tire Characteristics Using a Vehicle-Mounted Test Rig......Page 398
3.9.7.6 Measuring Uniformity and Geometry......Page 399
3.9.7.8 Power Loss Analysis......Page 401
3.9.7.9 Tire Temperature Measurement......Page 402
3.9.8.2 Energy Saving Tires......Page 403
4 Axles and Suspensions......Page 408
4.1 Rigid Axles......Page 410
4.1.2 Rigid Axles with Longitudinal Leaf Springs......Page 412
4.1.3 Rigid Axles with Longitudinal and Lateral Links......Page 413
4.2 Semi-Rigid Axles......Page 414
4.2.1 Twist Beam Axles......Page 415
4.2.1.2 Standard Twist Beam Axles......Page 416
4.2.2 The Dynamic Twist Beam Axle......Page 417
4.3.1 Independent Suspension Kinematics......Page 418
4.3.3 Single-Link Independent Suspension Systems......Page 420
4.3.3.1 Trailing Link Independent Suspension......Page 421
4.3.3.2 Semi-Trailing Link Independent Suspension......Page 422
4.3.4.1 Lateral-Longitudinal Swing Axles......Page 423
4.3.5.1 Central Link Independent Suspension......Page 424
4.3.5.2 Double Wishbone Independent Suspension......Page 425
4.3.6.1 Rear Axle Multi-Link Independent Suspension......Page 427
4.3.6.3 Trapezoidal (Integral) Link Suspension......Page 428
4.3.6.5 One Longitudinal and Three Lateral Links......Page 429
4.3.6.6 One Diagonal and Three Lateral Links......Page 430
4.3.7.2 Five-Link Rear Suspension......Page 431
4.3.8 Strut-Type Suspension Systems......Page 432
4.4.1 Front Axle Suspension System Requirements......Page 435
4.4.3.3 McPherson with
Decomposed Lower Control Arm......Page 437
4.4.3.5 Double Wishbone with Decomposed Control Arms......Page 438
4.5.3.2 Driven Rear Axles......Page 439
4.5.4 ULSAS Rear Axle Benchmark......Page 440
4.7.1 Front / Rear Axle Interaction......Page 441
4.8.3 Future Axle Designs (Trends)......Page 443
5.1.1 Concepts and Definitions......Page 446
5.1.2 Sources of Vibrations, Oscillations, and Noise......Page 447
5.1.3 Limits of Human Perception......Page 448
5.1.4 Human Comfort and Well-Being......Page 449
5.1.5 Mitigation of Oscillation and Noise......Page 450
5.2.1.2 Enabling Defined Movements......Page 451
5.2.1.3 Noise Isolation......Page 452
5.2.1.4 Vibration Damping......Page 453
5.2.2.2 Damping......Page 454
5.2.2.3 Setting......Page 455
5.3 Engine and Transmission Mounts......Page 456
5.4.1 Rubber Bushings......Page 460
5.4.2 Sliding Bushings......Page 461
5.4.3 Hydraulically-Damped Bushings (Hydro Bushings)......Page 462
5.4.4 Chassis Subframe Mounts......Page 465
5.4.5 Upper Strut Bearings and Damper Mounts......Page 466
5.4.6 Twist Beam Axle Mounts......Page 468
5.5 Future Component Designs......Page 469
5.5.2 Switchable Chassis Mounts......Page 470
5.6 Computation Methods......Page 471
5.7 Acoustic Evaluation of
Bonded Rubber Components......Page 472
6.1 The Development Process......Page 474
6.3 The Planning and Definition Phase......Page 480
6.3.1 Target Cascading......Page 481
6.5 Computer-Aided Engineering......Page 482
6.5.1.2 CAD Chassis Models and Multi-Body Systems......Page 483
6.5.1.3 Multi-Body Simulation with Rigid and Flexible MBS......Page 484
6.5.1.4 Multi-Body Simulations Using Whole-Vehicle, Chassis, and Axle Models......Page 485
6.5.1.5 Effects of Manufacturing Tolerances on Kinematic Parameters......Page 486
6.5.2.1 Classification of Analyses......Page 487
6.5.2.4 Natural Frequency Analyses......Page 488
6.5.2.7 Topology and Shape Optimization......Page 489
6.5.3.2 Kinematics and Elastokinematics......Page 491
6.5.3.3 Standard Load Cases......Page 492
6.5.3.5 NVH......Page 493
6.5.3.6 Loads Management (Load Cascading from Systems to Components)......Page 495
6.5.3.8 Whole-Vehicle Handling Fingerprint......Page 499
6.5.3.9 Specification of Elastokinematics Using Control-System Methods......Page 500
6.5.4 3D Modeling Software (CAD)......Page 501
6.5.5.1 Kinematic Analysis Using ABE Software......Page 502
6.5.5.2 The Virtual Product Development Environment (VPE)......Page 505
6.6.1 Design......Page 507
6.6.1.1 Component Design......Page 508
6.6.1.2 Package Volume......Page 509
6.6.2.2 Validation Using Test Rigs......Page 510
6.6.2.3 Roadway Simulation Test Rig......Page 513
6.6.3 Whole-Vehicle Validation......Page 514
6.7 Development Activities
During Series Production......Page 515
6.8 Summary and Future Prospects......Page 516
7.2.1 Domains......Page 518
7.2.2.3 Torque-On-Demand Transfer Cases......Page 519
7.2.2.4 Electronically-Controlled
Axle Differentials......Page 520
7.2.2.5 Axle Drive for Lateral Torque Distribution......Page 521
7.2.3.1 Electric Power Steering Systems (EPS)......Page 522
7.2.3.3 Active Rear-Wheel Steering......Page 523
7.2.4.1 Variable Dampers......Page 524
7.2.4.3 Active Leveling Systems......Page 526
7.2.5 Safety Requirements......Page 527
7.3.1 Vehicle Dynamic Control (VDC)......Page 528
7.3.2 Torque Vectoring......Page 530
7.4.1 System Architecture......Page 531
7.4.2 Standard Interfaces......Page 532
7.5 Chassis Control System......Page 533
7.5.1 Simulation Models......Page 534
7.5.2 Hardware-in-the-Loop Simulation......Page 535
7.6.1 Longitudinal Dynamics......Page 536
7.6.1.1 Powertrain Systems......Page 537
7.6.1.2 Braking Systems......Page 539
7.6.2.1 Front-Wheel Steering Systems......Page 541
7.6.2.2 Rear-Wheel Steering Systems......Page 542
7.6.2.3 Roll Stabilization Systems......Page 545
7.6.2.4 Active Kinematics......Page 548
7.6.3.2 Classification of Vertical Dynamic Systems......Page 551
7.6.3.3 Damping Systems......Page 552
7.6.3.4 Active Leveling Systems......Page 556
7.6.3.5 Current Active Spring Systems......Page 557
7.6.3.6 Fully Active Integrated Suspension Systems......Page 560
7.6.3.7 Pivots (Bushings, Joints, Mounts)......Page 562
7.7.1 Steer-by-wire......Page 564
7.7.2 Brake-by-wire......Page 565
7.7.2.2 Electromechanical Braking
(EMB) Systems......Page 566
7.7.2.4 Radial (Full-Contact) Disc Brakes......Page 567
7.7.2.5 Wedge Brake......Page 569
7.8.1 Braking Assistance Systems......Page 570
7.8.1.1 Safety-Relevant Braking Assistance......Page 571
7.8.1.3 Braking Assistance System Requirements......Page 572
7.8.2 Distance Assistance Systems......Page 573
7.8.3.2 Steering Assistance Using Additional Steering Torque......Page 574
7.8.3.3 Steering Assistance Using a Supplemental Steer Angle......Page 575
7.8.4.2 Parking Space Recognition......Page 576
7.8.4.3 Parallel Parking......Page 578
7.8.4.4 Steering Actuators......Page 579
8.1.1 Choosing Handling Behavior......Page 582
8.1.2.1 Front Suspension as of 2004......Page 584
8.1.3.1 The Future of Axle Drive Units......Page 585
8.2.1 Electronic Assistance Systems and Networking......Page 586
8.2.2.1 Peaceful Coexistence......Page 587
8.2.2.3 Networked Control......Page 588
8.2.2.6 The Development Process......Page 589
8.3 The Future of X-by-Wire Systems......Page 590
8.4 Intelligent and Predictive Future Chassis Systems......Page 591
8.4.2 Actuators......Page 592
8.4.3 Predictive Driving......Page 593
8.5 Hybrid Vehicles......Page 595
8.6 The Rolling/Driving Chassis......Page 596
8.7 The Vision of Autonomous Vehicle Control......Page 597
8.8 Future Scenarios for Vehicle and Chassis Technology......Page 598
8.9 Outlook......Page 601
B......Page 604
C......Page 605
D......Page 606
F......Page 607
I......Page 608
M......Page 609
P......Page 610
S......Page 611
T......Page 613
Y......Page 615
Z......Page 616