Characterizing All Models in Infinite Cardinalities [PhD Thesis]

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Lauri Keskinen
Series: ILLC Dissertation Series DS-2011-05
Publisher: University of Amsterdam
Year: 2011

Language: English
Pages: 97
City: Amsterdam

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The logics Ln . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 In nitary second order languages . . . . . . . . . . . . . . 11
1.2.3 The constructible universe L . . . . . . . . . . . . . . . . . 14
1.2.4 Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Ajtai's result, the countable case 19
2.1 A(L2; !) and L2-de nable well-order of the reals . . . . . . . . . . 19
2.2 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Failure of A(L2; !) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 The Frasse Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Submodels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3 Fourth order logic 35
3.1 Coding subsets by collapsing cardinals . . . . . . . . . . . . . . . 35
3.2 Solovay's result on complete second order sentences . . . . . . . . 40
4 Generalized quanti ers 45
4.1 The countable case . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 The uncountable case . . . . . . . . . . . . . . . . . . . . . . . . . 46
5 In nitary second order languages 51
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Regular cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Singular cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 A(L2;!; ) at a measurable cardinal . . . . . . . . . . . . . . . . . 61
6 A(L2; !) and large cardinal axioms 63
6.1 Large cardinals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Forcing axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7 Summary and future work 71
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Bibliography 75
Index 79
Samenvatting 81
Abstract 83