Center and Trace of the Twisted Heisenberg Category

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Can Ozan Oguz
Series: PhD thesis at University of Southern California
Year: 2018

Language: English

Dedication
ii
Acknowledgements
iii
List Of Tables
vii
List Of Figures
viii
Abstract
ix
Chapter 1: Introduction
1
Chapter 2: Categorification and Decategorification
8
2.1
Categorification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
2.2
Diagrammatic Categories
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
2.3
Trace Decategorification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
Chapter 3: Heisenberg Algebras and Heisenberg Categories
23
3.1
Heisenberg Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23
3.2
Heisenberg Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
3.2.1
Endomorphism spaces of H . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
3.2.2
H as Categorified Induction and Restriction . . . . . . . . . . . . . . . . . .
28
3.3
Twisted Heisenberg Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
3.4
Twisted Heisenberg Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
3.4.1
Endomorphism Spaces of Htw . . . . . . . . . . . . . . . . . . . . . . . . . .
35
3.4.2
Htw as Categorified Induction and Restriction
. . . . . . . . . . . . . . . .
42
Chapter 4: Trace of the twisted Heisenberg Category
45
4.1
W-algebras W1+∞ and W − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
4.1.1
Generators of the algebra W −
. . . . . . . . . . . . . . . . . . . . . . . . .
49
4.1.2
Fock space representation of W − . . . . . . . . . . . . . . . . . . . . . . . .
52
4.2
Diagrammatic computations in Htw and in Tr(Htw)
. . . . . . . . . . . . . . . . .
53
4.2.1
Even part of Tr(Htw)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
4.2.2
Grading on Tr(Htw)0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
4.2.3
Counter-clockwise bubble slide moves
. . . . . . . . . . . . . . . . . . . . .
60
4.2.4
Clockwise bubble slide moves . . . . . . . . . . . . . . . . . . . . . . . . . .
64
4.2.5
Dot degree zero part of Tr(Htw)0 . . . . . . . . . . . . . . . . . . . . . . . .
68
4.2.6
Nonzero dot degree part of Tr(Htw)0 . . . . . . . . . . . . . . . . . . . . . .
71
4.3
Algebra isomorphism between Tr(Htw)0 and W − . . . . . . . . . . . . . . . . . . .
81
4.3.1
Trace of Htw as a vector space
. . . . . . . . . . . . . . . . . . . . . . . . .
82
4.3.2
Generators of the algebra Tr(Htw)0 . . . . . . . . . . . . . . . . . . . . . . .
83
4.3.3
The isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
83
Chapter 5: Center of the Twisted Heisenberg Category
86
5.1
Sergeev algebra and Type B Weyl group . . . . . . . . . . . . . . . . . . . . . . . .
87
5.1.1
The super representation theory of Sn and �
Bn
. . . . . . . . . . . . . . . .
92
5.1.2
The centers of Sn and C[ �
Bn]
. . . . . . . . . . . . . . . . . . . . . . . . . .
94
5.2
The Subalgebra Γ of Symmetric Functions . . . . . . . . . . . . . . . . . . . . . . .
98
5.3
A new basis of EndHtw(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4
An isomorphism between EndHtw(1) and Γ . . . . . . . . . . . . . . . . . . . . . . 106
5.5
An action of Tr(Htw)0 on Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5.1
Description of the action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Reference List
117