Cellular Physiology of Nerve and Muscle, Fourth Edition

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Cellular Physiology of Nerve and Muscle, Fourth Edition offers a state of the art introduction to the basic physical, electrical and chemical principles central to the function of nerve and muscle cells. The text begins with an overview of the origin of electrical membrane potential, then clearly illustrates the cellular physiology of nerve cells and muscle cells. Throughout, this new edition simplifies difficult concepts with accessible models and straightforward descriptions of experimental results.An all-new introduction to electrical signaling in the nervous system. Expanded coverage of synaptic transmission and synaptic plasticity. A quantitative overview of the electrical properties of cells. New detailed illustrations.

Author(s): Gary G. Matthews
Edition: 4
Year: 2002

Language: English
Pages: 251

Cellular Physiology of Nerve and Muscle......Page 6
Contents......Page 8
Preface to the Fourth Edition......Page 12
Acknowledgments......Page 13
Part II Origin of Electrical Membrane Potential......Page 14
The Patellar Reflex as a Model for Neural Function......Page 16
The Cellular Organization of Neurons......Page 17
Electrical Signals in Neurons......Page 18
Transmission between Neurons......Page 19
2 Composition of Intracellular and Extracellular Fluids......Page 22
Intracellular and Extracellular Fluids......Page 23
The Structure of the Plasma Membrane......Page 24
Summary......Page 29
Molarity, Molality, and Diffusion of Water......Page 30
Osmotic Balance and Cell Volume......Page 33
Answers to the Problem of Osmotic Balance......Page 34
Time-course of Volume Changes......Page 37
Summary......Page 38
Diffusion Potential......Page 39
The Nernst Equation......Page 41
The Principle of Electrical Neutrality......Page 43
The Cell Membrane as an Electrical Capacitor......Page 44
Incorporating Osmotic Balance......Page 45
Donnan Equilibrium......Page 46
A Model Cell that Looks Like a Real Animal Cell......Page 48
The Sodium Pump......Page 50
Summary......Page 51
Equilibrium Potentials for Sodium, Potassium, and Chloride......Page 53
Membrane Potential and Ionic Permeability......Page 54
The Goldman Equation......Page 58
Ionic Steady State......Page 60
Electrical Current and the Movement of Ions Across Membranes......Page 61
Membrane Permeability vs. Membrane Conductance......Page 63
Behavior of Single Ion Channels......Page 65
Summary......Page 67
Part II Cellular Physiology of Nerve Cells......Page 68
Measuring the Long-distance Signal in Neurons......Page 70
Characteristics of the Action Potential......Page 72
Initiation and Propagation of Action Potentials......Page 73
Changes in Relative Sodium Permeability During an Action Potential......Page 76
Voltage-dependent Sodium Channels of the Neuron Membrane......Page 77
Repolarization......Page 79
The Refractory Period......Page 82
Propagation of an Action Potential Along a Nerve Fiber......Page 84
Factors Affecting the Speed of Action Potential Propagation......Page 86
Molecular Properties of the Voltage-sensitive Sodium Channel......Page 88
Calcium-dependent Action Potentials......Page 91
Summary......Page 96
The Voltage Clamp......Page 98
Measuring Changes in Membrane Ionic Conductance Using the Voltage Clamp......Page 100
Ionic Currents Across an Axon Membrane Under Voltage Clamp......Page 103
Membrane Potential and Peak Ionic Conductance......Page 107
Kinetics of the Change in Ionic Conductance Following a Step Depolarization......Page 110
Sodium Inactivation......Page 114
The Temporal Behavior of Sodium and Potassium Conductance......Page 118
Gating Currents......Page 120
Summary......Page 121
Chemical and Electrical Synapses......Page 123
Presynaptic Action Potential and Acetylcholine Release......Page 124
Effect of Acetylcholine on the Muscle Cell......Page 126
Neurotransmitter Release......Page 128
The Vesicle Hypothesis of Quantal Transmitter Release......Page 130
Mechanism of Vesicle Fusion......Page 134
Recycling of Vesicle Membrane......Page 136
Recording the Electrical Current Flowing Through a Single Acetylcholine-activated Ion Channel......Page 137
Molecular Properties of the Acetylcholine-activated Channel......Page 140
Summary......Page 142
Excitatory and Inhibitory Synapses......Page 143
Temporal and Spatial Summation of Synaptic Potentials......Page 144
Some Possible Excitatory Neurotransmitters......Page 146
Conductance-decrease Excitatory Postsynaptic Potentials......Page 149
The Synapse between Sensory Neurons and Antagonist Motor Neurons in the Patellar Re •ex......Page 150
Characteristics of Inhibitory Synaptic Transmission......Page 151
Mechanism of Inhibition in the Postsynaptic Membrane......Page 152
Some Possible Inhibitory Neurotransmitters......Page 154
The Family of Neurotransmitter-gated Ion Channels......Page 156
Neuronal Integration......Page 157
Indirect Actions of Neurotransmitters......Page 159
Presynaptic Inhibition and Facilitation......Page 162
Short-term Changes in Synaptic Strength......Page 165
Long-term Changes in Synaptic Strength......Page 167
Summary......Page 171
Part III Cellular Physiology of Muscle Cells......Page 174
The Three Types of Muscle......Page 176
Changes in Striation Pattern on Contraction......Page 178
Molecular Composition of Filaments......Page 180
Interaction between Myosin and Actin......Page 182
Regulation of Contraction......Page 185
The Sarcoplasmic Reticulum......Page 186
The Transverse Tubule System......Page 187
Summary......Page 189
The Motor Unit......Page 190
The Mechanics of Contraction......Page 191
The Relationship Between Isometric Tension and Muscle Length......Page 193
Recruitment of Motor Neurons......Page 195
Temporal Summation of Contractions Within a Single Motor Unit......Page 197
Asynchronous Activation of Motor Units During Maintained Contraction......Page 198
Summary......Page 200
12 Cardiac Muscle: The Autonomic Nervous System......Page 201
The Pattern of Cardiac Contraction......Page 204
Coordination of Contraction Across Cardiac Muscle Fibers......Page 206
The Cardiac Action Potential......Page 209
The Pacemaker Potential......Page 212
Actions of Acetylcholine and Norepinephrine on Cardiac Muscle Cells......Page 214
Summary......Page 219
Appendix A Derivation of the Nernst Equation......Page 221
Appendix B Derivation of the Goldman Equation......Page 225
Appendix C Electrical Properties of Cells......Page 229
Suggested Readings......Page 238
Index......Page 243