Celebrating the International Year of Mineralogy: Progress and Landmark Discoveries of the Last Decades

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

This volume celebrates mineral sciences and what are considered the most important progresses and breakthroughs in this discipline. Authoritative authors, who, in most cases, are the direct discoverers recount the steps of their research, which represent landmark developments of mineralogy and mineralogical crystallography.

Author(s): Luca Bindi, Giuseppe Cruciani
Series: Springer Mineralogy
Publisher: Springer
Year: 2023

Language: English
Pages: 360
City: Cham

Editorial
Contents
1 Discovery of Fullerenes and Quasicrystals in Nature
1.1 Introduction
1.2 Background
1.2.1 Fullerenes
1.2.2 Quasicrystals
1.3 The Discovery in Nature
1.3.1 Natural Fullerenes
1.3.2 Natural Quasicrystals
1.4 Aftermath
1.4.1 Natural Fullerenes
1.4.2 Natural Quasicrystals
1.5 Conclusions and Outlook
References
2 The Evolution of Mineral Evolution
2.1 Introduction: Pre-2008 Progress Towards Mineral Evolution
2.2 Mineral Evolution: 2008–2009
2.3 Quantitative Mineral Evolution: 2010–2019
2.4 An Evolutionary System of Mineralogy: 2019+
References
3 Mineral Informatics: Origins
3.1 Introduction
3.2 History of Data-Driven Research in Mineralogy (Early to 2014)
3.3 Increased Application of Data-Driven Discovery in Mineralogy (2014 to Present)
3.4 The Era of Mineral Informatics (2022 Onwards)
3.5 Importance of Minerals and Mineral Informatics
References
4 The Discovery of New Minerals in Modern Mineralogy: Experience, Implications and Perspectives
4.1 Introduction
4.2 Significance of New Minerals
4.3 Where New Minerals Can Be Discovered Today and Tomorrow?
4.4 New Minerals Discoveries in 21st Century: Our Experience and Some Implications
4.4.1 Minerals from Peralkaline Rocks
4.4.2 Minerals from Volcanic Fumaroles
4.4.3 Supergene Minerals
4.5 Minerals and X-Rays
4.6 Characterization of New Minerals with the Use of Big Data
4.7 Implications to Classification of Minerals
4.8 Use of Synchrotron Radiation in Studies of New Minerals
4.9 New High-Pressure Minerals
4.10 Epilogue. Unsuccessful Attempt to Discover a New Mineral, or a Practical Advice to Collectors
4.11 Look to the Future
References
5 Structural and Chemical Complexity of Minerals: The Information-Based Approach
5.1 Introduction
5.2 Minerals as Information Reservoirs: Basic Principles
5.3 Mineralogical Configuration Spaces, Energy and Information Landscapes
5.4 Complexity and Symmetry
5.5 Complexity and Entropy
5.6 Complexity and Mineral Diversity
5.7 Complexity, Modularity and Hierarchy
5.7.1 Complexity-Generating Mechanisms in Minerals
5.7.2 Contributions to Structural Complexity: Quantitative Evaluation
5.7.3 Complexity Behavior in Modular Series
5.7.4 Information and Abundance in Modular Series
5.7.5 Information and Hierarchy
5.8 Complexity and Thermodynamics
5.9 Complexity Versus Time: Mineral Evolution
5.10 Complexity and Crystallization
5.11 Complexity, Symmetry and History of Mineralogy
5.12 Complexity of Minerals and Complexity of Life
5.13 Conclusions
References
6 Predicting HP-HT Earth and Planetary Materials
6.1 Introduction
6.2 The World of Supercomputers
6.3 Interatomic Potentials, and Why They Faded
6.3.1 Ab Initio Simulations
6.3.2 Density Functional Theory
6.3.3 Density Functional Perturbation Theory
6.3.4 First-Principles Molecular Dynamics
6.3.5 Why DFT Conquered the Computational World
6.4 The DFT Revolution in Mineralogy
6.5 Iron Up to Super-Earth Conditions
6.6 Phase Relations of the Earth’s Lower Mantle
6.7 Magma Ocean of the Early Earth
6.8 Mineral Spectroscopy
6.9 Machine Learning Potentials—A Part of the Future
References
7 Structural Mechanisms Stabilizing Hydrous Silicates at Deep-Earth Conditions
7.1 Introduction
7.2 Polysomatic Decomposition Reactions and Their Significance for Amphibole Stability in the Mantle
7.2.1 Richteritic Amphiboles
7.2.2 Eckermannite as the Post-Glaucophane Sodium Amphibole in Subduction Zones
7.2.3 KK-Richterite and Mixed-Chain K-Rich Pyriboles at UHP
7.3 Protonation Reactions and Vacancy Formation as Stabilizing Mechanisms at UHP
7.3.1 Vacancy Pairing and Protonation in the UHP Sheet Structure K1.5MgSi2O7H0.5
7.3.2 Talc → 10Å-Phase → MgSi(OH)6
7.3.3 Phase D: Nominally “MgSi2O6H2”
7.3.4 Phase E: A Non-stoichiometric Protonated Structure
7.3.5 Phase H MgSiO4H2, Phase Egg AlSiO3(OH) and Its Mg-Analogue
7.4 Concluding Remarks
References
8 Discovering High-Pressure and High-Temperature Minerals
8.1 The Concept and the Chemistry of High Pressure Minerals
8.1.1 High Pressure Minerals–Their Occurrences
8.2 High Temperature Minerals–Definition
References
9 Mineralogy of Planetary Cores
9.1 The Chemistry and Formation of Planetary Cores
9.1.1 Earth’s Core Composition
9.1.2 Earth’s Core State, Structure, and Crystallization Regime
9.1.3 Mercurian, Venutian, and Martian Core Composition and Structure
9.2 Phase Relations and Core Mineralogy in the Iron-Alloy Systems
9.2.1 The Iron Phase Diagram
9.2.2 Mineralogy of an Iron Core
9.2.3 Phase Relations in the Fe–Si System
9.2.4 Role of Si in Planetary Core Crystallization
9.2.5 Phase Relations in the Fe–O System
9.2.6 Role of O in Planetary Core Crystallization
9.2.7 Phase Relations in the Fe–S System
9.2.8 Role of S in Planetary Core Crystallization
9.2.9 Phase Relations in the Fe–C System
9.2.10 Role of C in Planetary Core Crystallization
9.2.11 Phase Relations in the Fe–H System
9.2.12 Role of H in Planetary Core Crystallization
9.2.13 Core Crystallization in Multicomponent Systems and Outlook for Future Studies
References
10 Going Inside a Diamond
10.1 Introduction
10.2 Lithospheric Diamonds
10.2.1 Morphology, Diamond Type, Age, Inclusions
10.2.2 Depth of Formation of Lithospheric Diamonds by Elastic Geobarometry
10.3 Super-Deep Diamonds
10.3.1 Morphology, Diamond Type, Age, Inclusions
10.3.2 Depth of Formation of Super-Deep Diamonds by Elastic Geobarometry
10.4 Temporal Growth Relationship Between Diamond and Its Mineral Inclusions
10.5 Conclusions and Outlook
References
11 Mineralogy of Returned Sample from C-Type Near-Earth Asteroid (162173) Ryugu
11.1 Introduction
11.2 Hayabusa2 and Asteroid Ryugu
11.2.1 Proximity Observation and the Results
11.2.2 Sample Collection
11.3 Hayabusa2 Returned Sample from Ryugu
11.4 General Characteristics of Ryugu Sample
11.5 Mineralogy of Ryugu
11.5.1 Major Minerals
11.5.2 Minor Minerals
11.5.3 Comparison with Minerals in CI Chondrites
11.5.4 Space Weathering Features
11.6 Ryugu’s History Deduced from Minerals and Summary
References
12 Mineral Discoveries that Changed Everyday Life
12.1 Introduction
12.2 Mineral Discoveries and Climate Change. Progresses in the CO2 Capture by Minerals
12.3 Mineral Discoveries and Energy. Lithium-Minerals, the Key “Energy” Source for the Future
12.4 Mineral Discoveries and Industrial Applications. Selected Outstanding Examples
12.4.1 Coltan and Electronic Devices
12.4.2 Rare Earth Elements
12.4.3 Binders
12.5 Mineral Discoveries for the Health and Environment. Examples from the Realm of Layer Silicates
12.5.1 Asbestos
12.5.2 Clay Minerals
12.6 The Wonderful World of Zeolites. Probably the Most Outstanding Mineral Discoveries that Changed Humans’ Life
12.7 Concluding Remarks
References
13 Hydrogen, the Principal Agent of Structural and Chemical Diversity in Minerals
13.1 Stereochemistry of H+
13.2 Bond-Valence Theory
13.2.1 Lewis Acids and Lewis Bases
13.2.2 The Basic Axioms of Bond-Valence Theory
13.3 The Incorporation of H+ into Mineral Structures
13.3.1 Strongly Bonded Polyions Involving H+ and Other First-Row Ions
13.3.2 Strongly Bonded Polyions Involving H+ and High-Valence Oxyanions
13.3.3 Itinerant Protons
13.3.4 Quantum Tunnelling
13.3.5 (OH)––F– Solid Solution: Constraints Imposed by Hydrogen Bonding
13.3.6 Trace H in Minerals
13.4 Binary Structure Representation
13.5 The Effects of (OH)– and (H2O)0 on Dimensional Polymerization in Oxysalt Structures
13.6 The Valence-Matching Principle and the Role of (H2O)
13.6.1 The Principle of Correspondence of Lewis Acidity-Basicity
13.6.2 (H2O) as a Moderator of Bond Valence
13.6.3 An Example: The Pascoite-Family Decavanadate Minerals
13.7 Multi-scale Processes from Small-Scale Mechanisms
13.7.1 Medium-Scale Processes: Relative Humidity as a Driver of Structural Change
13.7.2 Large-Scale Processes from Small-Scale Mechanisms
13.8 Coda
References