An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.
CONTENTS
=========
Introduction
I. Categories, Functors, and Natural Transformations
1. Axioms for Categories
2. Categories
3. Functors
4. Natural Transformations
5. Monics, Epis, and Zeros
6. Foundations
7. Large Categories
8. Hom-Sets
II. Constructions on Categories
1. Duality
2. Contravariance and Opposites
3. Products of Categories
4. Functor Categories
5. The Category of All Categories
6. Comma Categories
7. Graphs and Free Categories
8. Quotient Categories
III. Universals and Limits
1. Universal Arrows
2. The Y oneda Lemma
3. Coproducts and Colimits
4. Products and Limits
5. Categories with Finite Products
6. Groups in Categories
7. Colimits of Representable Functors
IV. Adjoints
1. Adjunctions
2. Examples of Adjoints
3. Reflective Subcategories
4. Equivalence of Categories
5. Adjoints for Preorders
6. Cartesian Closed Categories
7. Transformations of Adjoints
8. Composition of Adjoints
9. Subsets and Characteristic Functions
10. Categories Like Sets
V. Limits
1. Creation of Limits
2. Limits by Products and Equalizers
3. Limits with Parameters
4. Preservation of Limits
5. Adjoints on Limits
6. Freyd's Adjoint Functor Theorem
7. Subobjects and Generators
8. The Special Adjoint Functor Theorem
9. Adjoints in Topology
VI. Monads and Algebras
1. Monads in a Category
2. Algebras for a Monad
3. The Comparison with Algebras
4. Words and Free Semigroups
5. Free Algebras for a Monad
6. Split Coequalizers
7. Beck's Theorem
8. Algebras Are T-Algebras
9. Compact Hausdorff Spaces
VII. Monoids
1. Monoidal Categories
2. Coherence
3. Monoids
4. Actions
5. The Simplicial Category
6. Monads and Homology
7. Closed Categories
8. Compactly Generated Spaces
9. Loops and Suspensions
VIII. Abelian Categories
1. Kernels and Cokernels
2. Additive Categories
3. Abelian Categories
4. Diagram Lemmas
IX. Special Limits
1. Filtered Limits
2. Interchange of Limits
3. Final Functors
4. Diagonal Naturality
5. Ends
6. Coends
7. Ends with Parameters
8. Iterated Ends and Limits
X. Kan Extensions
1. Adjoints and Limits
2. Weak Universality
3. The Kan Extension
4. Kan Extensions as Coends
5. Pointwise Kan Extensions
6. Density
7. All Concepts Are Kan Extensions
XI. Symmetry and Braiding in Monoidal Categories
1. Symmetric Monoidal Categories
2. Monoidal Functors
3. Strict Monoidal Categories
4. The Braid Groups Bn and the Braid Category
5. Braided Coherence
6. Perspectives
XII. Structures in Categories
1. Internal Categories
2. The Nerve of a Category
3. 2-Categories
4. Operations in 2-Categories
5. Single-Set Categories
6. Bicategories
7. Examples of Bicategories
8. Crossed Modules and Categories in Grp
Appendix. Foundations
Table of Standard Categories: Objects and Arrows
Table of Terminology
Bibliography
Index
Author(s): Saunders Mac Lane
Series: Graduate Texts in Mathematics
Edition: 2
Publisher: Springer
Year: 1998
Language: English
Commentary: Vector PDF, front and back covers, bookmarks, pagination.
Pages: 332
Front Cover......Page 1
Preface to the Second Edition......Page 7
Preface to the First Edition......Page 9
Contents......Page 11
Introduction......Page 15
1. Axioms for Categories......Page 21
2. Categories......Page 24
3. Functors......Page 27
4. Natural Transformations......Page 30
5. Monics, Epis, and Zeros......Page 33
6. Foundations......Page 35
7. Large Categories......Page 38
8. Hom-Sets......Page 41
1. Duality......Page 45
2. Contravariance and Opposites......Page 47
3. Products of Categories......Page 50
4. Functor Categories......Page 54
5. The Category of All Categories......Page 56
6. Comma Categories......Page 59
7. Graphs and Free Categories......Page 62
8. Quotient Categories......Page 65
1. Universal Arrows......Page 69
2. The Y oneda Lemma......Page 73
3. Coproducts and Colimits......Page 76
4. Products and Limits......Page 82
5. Categories with Finite Products......Page 86
6. Groups in Categories......Page 89
7. Colimits of Representable Functors......Page 90
1. Adjunctions......Page 93
2. Examples of Adjoints......Page 100
3. Reflective Subcategories......Page 104
4. Equivalence of Categories......Page 106
5. Adjoints for Preorders......Page 109
6. Cartesian Closed Categories......Page 111
7. Transformations of Adjoints......Page 113
8. Composition of Adjoints......Page 117
9. Subsets and Characteristic Functions......Page 119
10. Categories Like Sets......Page 120
1. Creation of Limits......Page 123
2. Limits by Products and Equalizers......Page 126
3. Limits with Parameters......Page 129
4. Preservation of Limits......Page 130
5. Adjoints on Limits......Page 132
6. Freyd's Adjoint Functor Theorem......Page 134
7. Subobjects and Generators......Page 140
8. The Special Adjoint Functor Theorem......Page 142
9. Adjoints in Topology......Page 146
1. Monads in a Category......Page 151
2. Algebras for a Monad......Page 153
3. The Comparison with Algebras......Page 156
4. Words and Free Semigroups......Page 158
5. Free Algebras for a Monad......Page 161
6. Split Coequalizers......Page 163
7. Beck's Theorem......Page 165
8. Algebras Are T-Algebras......Page 170
9. Compact Hausdorff Spaces......Page 171
1. Monoidal Categories......Page 175
2. Coherence......Page 179
3. Monoids......Page 184
4. Actions......Page 188
5. The Simplicial Category......Page 189
6. Monads and Homology......Page 194
7. Closed Categories......Page 198
8. Compactly Generated Spaces......Page 199
9. Loops and Suspensions......Page 202
1. Kernels and Cokernels......Page 205
2. Additive Categories......Page 208
3. Abelian Categories......Page 212
4. Diagram Lemmas......Page 216
1. Filtered Limits......Page 225
2. Interchange of Limits......Page 228
3. Final Functors......Page 231
4. Diagonal Naturality......Page 232
5. Ends......Page 236
6. Coends......Page 240
7. Ends with Parameters......Page 242
8. Iterated Ends and Limits......Page 244
1. Adjoints and Limits......Page 247
2. Weak Universality......Page 249
3. The Kan Extension......Page 250
4. Kan Extensions as Coends......Page 254
5. Pointwise Kan Extensions......Page 257
6. Density......Page 259
7. All Concepts Are Kan Extensions......Page 262
1. Symmetric Monoidal Categories......Page 265
2. Monoidal Functors......Page 269
3. Strict Monoidal Categories......Page 271
4. The Braid Groups Bn and the Braid Category......Page 274
5. Braided Coherence......Page 277
6. Perspectives......Page 280
1. Internal Categories......Page 281
2. The Nerve of a Category......Page 284
3. 2-Categories......Page 286
4. Operations in 2-Categories......Page 290
5. Single-Set Categories......Page 293
6. Bicategories......Page 295
7. Examples of Bicategories......Page 297
8. Crossed Modules and Categories in Grp......Page 300
Appendix. Foundations......Page 303
Table of Standard Categories: Objects and Arrows......Page 307
Table of Terminology......Page 309
Bibliography......Page 311
Index......Page 317
Back Cover......Page 332