Written by the most prominent experts and pioneers in the field, this ready reference combines fundamental research, recent breakthroughs and real-life applications in one well-organized treatise.As such, both newcomers and established researchers will find here a wide range of current methods for producing and characterizing carbon nanotubes using imaging as well as spectroscopic techniques. One major part of this thorough overview is devoted to the controlled chemical functionalization of carbon nanotubes, covering intriguing applications in photovoltaics, organic electronics and materials design. The latest research on novel carbon-derived structures, such as graphene, nanoonions and carbon pea pods, round off the book.
Author(s): Dirk M. Guldi, Nazario Martin
Edition: 1
Year: 2010
Language: English
Pages: 564
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноматериаловедение;Углеродные наноматериалы;
Carbon Nanotubes and Related Structures: Synthesis, Characterization, Functionalization, and Applications......Page 2
Contents......Page 8
Preface......Page 18
List of Contributors......Page 22
1.1 Introduction......Page 26
1.2.1 Arc Discharge......Page 28
1.2.2 Laser Ablation......Page 29
1.2.3 Chemical Vapor Deposition......Page 30
1.3 Catalysts......Page 31
1.3.2 Ceramic Catalysts......Page 32
1.4 Growth Enhancement......Page 33
1.5 Growth Mechanisms......Page 34
1.5.1 Floating Catalyst Methods......Page 35
1.5.2 Supported Catalyst Routes......Page 38
1.5.3 Catalyst-Free Routes......Page 40
1.7 Purification......Page 41
References......Page 42
2.1 Introduction......Page 48
2.2 Physical Structure and Bonding in Nanotube–DNA Hybrids: A Short Review......Page 49
2.3 Quantum Mechanical Modeling of the Hybrid Structure: Tight Binding Band Structure Calculations......Page 51
2.4 Self-Consistent Computation Scheme: Acting Potential......Page 58
2.5 Screening Factor and the Dielectric Permittivity......Page 59
2.6 Polarization Component of Cohesion Energy of the SWNT–ssDNA Hybrid......Page 60
2.7 Optical Absorption of SWNT–DNA Hybrids......Page 65
2.8 Summary......Page 72
References......Page 73
3.2 Electronic Properties of SWNTs......Page 78
3.3 Electrode Potentials Versus Work Functions......Page 79
3.4 Electrochemistry at SWNTs Versus Electrochemistry of SWNTs......Page 81
3.6 Carbon Nanotubes for Electrochemical Sensors and Biosensors......Page 84
3.7 Electrochemistry of Carbon Nanotubes......Page 86
3.8 Cyclic Voltammetric Investigations of Solutions of Individual SWNTs......Page 88
3.9 Vis–NIR Spectroelectrochemical Investigation of True Solutions of Unfunctionalized SWNTs......Page 91
3.10 Standard Redox Potentials of Individual SWNTs in Solution......Page 92
3.11 Fermi Level and Excitonic Binding Energy of the Nanotubes......Page 96
References......Page 97
4.2 Molecular Nanoparticles: Carbon Nanotubes Have it All......Page 102
4.3 Understanding Optical Properties......Page 103
4.3.1 A Tight Binding Description......Page 104
4.4 The Coulomb Interaction and Bound States......Page 107
4.5 Colloidal Chemistry Facilitates Detailed Study of Nanotube Optics......Page 112
4.6 Excited State Dynamics and Nonlinear Optics......Page 117
References......Page 123
5.1 Introduction......Page 128
5.2 Early Insights in the Noncovalent Interaction of CNTs with Solvents and Classical Macrocyclic Scaffolds......Page 129
5.3.1 Anthracene Derivatives......Page 130
5.3.2 Pyrene Derivatives......Page 132
5.3.3 Other Polyaromatic Derivatives......Page 137
5.4.1 Porphyrins, Phthalocyanines, and Sapphyrins......Page 139
5.4.2 Metallic Coordination......Page 141
5.5 Noncovalent Interactions of CNTs with Surfactants and Ionic Liquids......Page 143
5.6.1 Polymeric Amphiphiles......Page 146
5.6.2 Conjugated Polymers......Page 148
5.6.3 Biopolymers......Page 150
5.8 Noncovalent Interactions of CNTs with Nanoparticles......Page 152
References......Page 154
6.1 Introduction......Page 160
6.2.1 Derivatization Strategies......Page 161
6.2.2 Topology and Reactivity of Carbon Nanotubes......Page 163
6.3 Defect Group Functionalization of Carbon Nanotubes......Page 165
6.3.1 Defect Types and Defect Generation......Page 166
6.3.2.1 Soluble CNT-Derivatives......Page 168
6.3.2.2 Cofunctionalization of CNTs......Page 170
6.3.2.3 Asymmetric End-Functionalization of Carbon Nanotubes......Page 171
6.3.2.4 Nanoparticle and Quantum Dot: CNT Conjugates......Page 172
6.3.2.5 Surface Attachment of CNTs......Page 173
6.3.2.7 Carbon Nanotubes as Integrated Unit in Donor/Acceptor Assemblies......Page 174
6.3.2.8 Functional CNT Composite Architectures......Page 176
6.3.3 Functional Group Interconversion......Page 178
6.4 Direct Sidewall Functionalization of Carbon Nanotubes......Page 179
6.4.1 Fluorination and Nucleophilic Substitution Reactions of Fluorinated Carbon Nanotubes......Page 180
6.4.3 Epoxidation of Carbon Nanotubes......Page 181
6.4.4.1 The Addition of Carbenes and Nitrenes......Page 182
6.4.4.2 Nucleophilic Cyclopropanation: The Bingle Reaction......Page 184
6.4.5.1 Cycloaddition of Zwitterionic Intermediates......Page 185
6.4.5.2 Azomethine Ylide Addition......Page 186
6.4.6 [4 + 2]-Cycloaddition Reactions: Diels–Alder Reaction......Page 189
6.4.7.2 Reductive Alkylation of CNTs......Page 191
6.4.7.3 Other Electron Transfer Mediators......Page 193
6.4.8.1 Carbon-Centered Free Radicals......Page 194
6.4.8.3 Oxygen-Centered Free Radicals......Page 196
6.4.8.5 Diazonium-Based Functionalization Sequences......Page 197
6.4.9 Sidewall Functionalization Through Electrophilic Addition......Page 200
6.4.10.1 Carbon-Based Nucleophiles......Page 201
6.4.10.2 Nitrogen-Based Nucleophiles......Page 203
References......Page 204
7.2.1 Structures, Characteristics, and Derivatization of Carbon Nanotubes......Page 224
7.2.2 Biological Applications of CNTs......Page 226
7.2.2.1 Cell Penetration......Page 227
7.2.2.2 Drug Delivery......Page 228
7.2.2.3 Gene Delivery......Page 230
7.2.2.4 Other Anticancer Approaches......Page 231
7.2.2.5 Neuron Interactions with CNTs......Page 233
7.2.2.6 Antioxidant Properties of CNTs......Page 234
7.2.2.7 Imaging using Carbon Nanotubes......Page 235
7.2.3 Carbon Nanotube Toxicity......Page 236
7.3.1 Structure, Characteristics and Functionalization of SWCNHs......Page 238
7.3.2 Biomedical Applications of Carbon Nanohorns......Page 240
7.3.2.2 Carbon Nanohorn for Drug Delivery......Page 241
7.4.1 Introduction......Page 244
7.4.2 Carbon Nanodiamond as Delivery Vehicle......Page 246
7.4.3 Carbon Nanodiamond as Biomarker for Cellular Imaging......Page 247
7.5 Conclusions......Page 249
References......Page 250
8.1 Introduction......Page 258
8.2 Ground and Excited State Features......Page 260
8.3.1 Chemical Reduction......Page 263
8.3.2 Electrochemical Reduction......Page 264
8.3.3 Reduction by Doping......Page 266
8.4.1 Chemical Oxidation......Page 267
8.4.3 Oxidation by Doping......Page 268
8.5.1 Covalent Electron Donor–Acceptor Conjugates......Page 270
8.5.2 Noncovalent Electron Donor–Acceptor Hybrids......Page 271
8.6.1 Covalent Electron Donor–Acceptor Conjugates......Page 272
8.6.2 Noncovalent Electron Donor–Acceptor Hybrids......Page 279
8.7.1 Noncovalent Electron Donor–Acceptor Hybrids......Page 289
8.7.2 Charge Transfer Interactions – CNT and Polymers......Page 291
8.8.1 Conducting Electrode Materials......Page 294
8.8.2 Counter Electrodes for DSSC......Page 295
8.9.1 Active Component in Photoactive Layer......Page 296
8.9.2 Gas Sensors......Page 298
References......Page 299
9.1 Introduction......Page 316
9.2.1 Carbon Nanotubes as Electron Acceptors in Organic PVs......Page 317
9.2.2 Hole Collecting Electrodes......Page 322
9.3 Related Structures......Page 323
9.4 Future Directions......Page 325
References......Page 326
10.1 Introduction......Page 330
10.2 Structure and Properties of CNTs......Page 331
10.3 Structural Organization in Multilayers of Carbon Nanotubes......Page 332
10.4 Electrical Conductor Applications......Page 334
10.5 Sensor Applications......Page 336
10.6 Fuel Cell Applications......Page 338
10.7 Nano-/Microshell LBL Coatings and Biomedical Applications......Page 339
10.8 Conclusions......Page 340
References......Page 341
11.1 Introduction......Page 346
11.2 Macroscopic shaping of CNTs......Page 347
11.3 Specific Metal–Support Interaction......Page 348
11.4.1 Surface Area and Porosity of CNT......Page 352
11.4.2 CNT Surface Activation to Improve Particle Dispersion......Page 353
11.4.4 Influence of Catalyst Preparation Procedure on Metal Loading and Dispersion......Page 355
11.5.1 Electrical Conductive Supports......Page 357
11.5.2 Thermally Conductive Supports......Page 359
11.6 Mass Transfer Limitations......Page 360
11.7 Confinement Effect......Page 363
11.8 Conclusion......Page 367
References......Page 368
12.1 Introduction......Page 374
12.2 Mechanisms of Nanotube Filling......Page 375
12.3.1 Fullerene C60......Page 378
12.3.2 Higher Fullerenes......Page 384
12.3.3 Endohedral Fullerenes......Page 386
12.3.4 Functionalized Fullerenes......Page 390
12.4.1 Molecules Without Metal Atoms......Page 394
12.4.2 Organometallic and Coordination Compounds......Page 397
12.5.1 Salts......Page 399
12.5.2 Oxides and Hydroxides......Page 402
12.6 Nanoparticles in Nanotubes......Page 403
References......Page 405
13.2 Production......Page 410
13.4 Properties......Page 411
13.5.1 Material Incorporation and Release......Page 414
13.5.2 Chemical Modification of Structure Defects......Page 415
13.5.3 Chemical Functionalization at Hole Edges......Page 416
13.5.4 Physical Modification......Page 419
13.6 Toxicity......Page 420
13.7 Drug Delivery Applications......Page 422
13.8 Summary......Page 423
References......Page 424
14.1.1 Graphene, Graphene Nanoribbon, and Nanographene......Page 430
14.1.2 Organization of Nanographenes......Page 434
14.2 Single Sheets of Nanographenes......Page 435
14.3.1 Liquid Crystalline Columnar Phases......Page 437
14.3.2 Helical Packing of Discotic Nanographenes......Page 441
14.3.3 Complementary Interactions......Page 444
14.4 Charge Carrier Transport Along Nanographene Stacks......Page 448
14.5 Solution Aggregation and Fiber Formation......Page 450
14.6 Solution Alignment on Surfaces......Page 458
14.7 Thermal Processing......Page 462
14.8 Nanographenes in Heterojunctions for Solar Cells......Page 467
14.9 Processing of Nondiscotic Nanographenes......Page 468
14.10 Conclusions......Page 469
References......Page 470
15.1 Introduction......Page 480
15.2.1 The Reactive Gas Atmosphere......Page 481
15.3.1 Separation by Electrochemical Method......Page 482
15.3.2 Separation by Other Chemical Methods......Page 483
15.4.1 Monometallofullerenes......Page 485
15.4.2 Dimetallofullerenes......Page 487
15.4.3 Metallic Carbide Fullerenes and Metallic Oxide Fullerenes......Page 489
15.4.4 Trimetallic Nitride Fullerenes......Page 490
15.5 Electrochemical Properties of Endohedral Metallofullerenes......Page 493
15.6.2.1 Diels–Alder Reaction......Page 496
15.6.2.2 Prato Reactions......Page 497
15.6.2.3 Carbene Reactions......Page 498
15.6.2.5 Cycloaddition via a Zwitterion Approach......Page 499
15.6.3 Nucleophilic Addition......Page 500
15.6.4 Radical Reactions......Page 501
15.7.1 Magnetic Resonance Imaging (MRI) Contrast Agents......Page 502
15.7.2 Peapod and Nanorod......Page 504
15.8 Concluding Remarks......Page 505
References......Page 506
16.1 Introduction......Page 516
16.2 Energetics and Thermodynamics of Clusters......Page 517
16.3 Stabilities of Empty Fullerenes......Page 520
16.4 Stabilities of Metallofullerenes......Page 522
16.5 Stabilities of Nonmetal Endohedrals......Page 530
16.6 Kinetic Control......Page 532
References......Page 536
Index......Page 550