Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

The carbon nanotubes field has evolved substantially since the publication of the bestseller "Carbon Nanotubes: Synthesis, Structure, Properties and Applications'. The present volume builds on the generic aspects of the aforementioned book, which emphasizes the fundamentals, with the new volume emphasizing areas that have grown rapidly since the first volume, guiding future directions where research is needed and highlighting applications. The volume also includes an emphasis on areas like graphene, other carbon-like and other tube-like materials because these fields are likely to affect and influence developments in nanotubes in the next 5 years.

Author(s): Ado Jorio, Ado Jorio, Gene Dresselhaus, Mildred S. Dresselhaus
Series: Topics in Applied Physics
Publisher: Springer
Year: 2008

Language: English
Pages: 750
Tags: Специальные дисциплины;Наноматериалы и нанотехнологии;Наноматериаловедение;Углеродные наноматериалы;

Introduction......Page 23
Physical Techniques......Page 26
Soft Chemistry ``Chemie Douce''......Page 29
High-Temperature Reactions......Page 31
General Considerations......Page 33
Strain-Relaxation Mechanisms in the Nanotubes......Page 35
Studies of Some Specific Systems......Page 37
Mechanical Properties......Page 41
Electronic and Optical Properties......Page 43
Tribological Applications......Page 47
Li Intercalation and Hydrogen Sorption in MS2 Nanotubes......Page 48
Solar Cells, Photocatalysis and Sensors......Page 49
Catalysis......Page 50
Conclusions......Page 51
References......Page 52
Index......Page 61
Introduction......Page 65
Geometrical Definition of the Cone......Page 66
Structure, Production, and Growth Mechanism of Single-Wall Carbon Nanohorns......Page 67
Properties of Single-Wall Nanohorns......Page 71
Applications of Single-Wall Nanohorns......Page 72
Comparison of Single-Wall Nanohorns * to Single-Wall Nanotubes......Page 76
Mechanical Response of Carbon Nanocones......Page 77
Electronic Properties of Carbon Cones......Page 79
References......Page 82
Index......Page 88
Introduction......Page 91
Potential-Dependent Reactions......Page 92
Faradaic and Non-Faradaic Processes in Nanocarbons (Nanotubes, Fullerenes)......Page 93
Doping of Nanocarbons......Page 95
Voltammetry......Page 99
Methods of Spectroelectrochemistry......Page 102
Electrochemical Synthesis and Behavior of Nanotubes......Page 103
Practical Devices......Page 104
Vis-NIR Spectroelectrochemistry......Page 106
Raman Spectroelectrochemistry......Page 109
SWNTs......Page 110
Double-Walled Carbon Nanotubes......Page 113
Combined Chemical/Electrochemical Doping......Page 116
Single-Nanotube Studies......Page 117
Summary and Outlook......Page 118
References......Page 119
Index......Page 127
Introduction......Page 129
Exohedral Doping or Intercalation......Page 130
Endohedral Doping or Encapsulation......Page 131
Substitutional Doping in Nanotubes......Page 132
Laser-Ablation Method......Page 135
B and N Substitution Reactions......Page 136
Morphological and Structural Characterization......Page 138
Atomic Structure of N-Doped MWNTs......Page 139
Atomic Structure of Doped SWNTs......Page 140
Electronic and Transport Characterization......Page 141
Nonsubstitutional n-Type Doped Nanotubes......Page 144
Nonsubstitutional p-Type Doped Nanotubes......Page 148
Raman Spectroscopy for Inplane Doped Nanotubes......Page 149
Applications of Doped Nanotubes......Page 151
Perspectives and Challenges......Page 153
References......Page 156
Index......Page 164
Introduction......Page 165
Preparation of Double-Wall Carbon Nanotubes......Page 166
DWNT Growth from Chemical Vapor Deposition......Page 167
DWNT Growth from Fullerene Peapods......Page 171
DWNT Growth from Ferrocene......Page 173
DWNT Growth from Other Carbon Precursors......Page 176
Theoretical Models for the Fullerene Coalescence......Page 177
Electronic and Optical Properties, Transport......Page 178
Model Calculations......Page 179
Transport......Page 181
Raman Scattering......Page 182
Tangential Modes and Overtones......Page 183
Temperature, Pressure, and Doping Effects......Page 184
13 C Substitution and Nuclear Magnetic Resonance......Page 186
Thermal and Chemical Stability, Mechanical Properties......Page 187
Pore Structure and Oxidative Stability of the Bundled DWNTs......Page 188
Mechanical Properties......Page 190
Summary and Outlook......Page 191
Outlook......Page 192
References......Page 193
Index......Page 200
Near-Field Optical Microscopy......Page 201
Experimental......Page 202
Nanoscale Optical Imaging......Page 203
Nanoscale Optical Spectroscopy......Page 205
Outlook......Page 207
Experimental......Page 208
Results......Page 209
Outlook......Page 212
Coherent Phonon Generation and Detection......Page 213
Results......Page 214
References......Page 219
Index......Page 223
Introduction......Page 225
Parallel Field: Role of the Aharonov--Bohm Phase......Page 226
Perpendicular Field: Onset of Landau Levels......Page 227
Theory of the Magnetic Susceptibility......Page 229
Magnetic-Susceptibility Measurements......Page 231
Magneto-transport......Page 232
Weak Localization and Magnetoresistance Oscillations......Page 233
Most Recent Experiments......Page 236
Magneto-Optics......Page 237
Bandgap Shrinkage and Aharonov--Bohm Splitting......Page 238
Magnetic Brightening of ``Dark'' Excitons: Theory......Page 239
Magnetic Brightening of ``Dark'' Excitons: Experiment......Page 242
Perpendicular Field Effects......Page 246
Summary and Remaining Problems......Page 247
References......Page 248
Index......Page 253
The Nature of the Optically Excited State......Page 255
Low-Energy Exciton Bandstructure --Dark and Bright Excitons......Page 257
Exciton Radiative and Nonradiative Lifetimes......Page 259
Exciton--Optical Phonon Sidebands in Absorption Spectra......Page 260
Impact Excitation, Auger Recombination and Exciton Annihilation......Page 262
Franz--Keldysh, Stark Effects and Exciton Ionization by Electric Fields......Page 265
Overview of CNT Electronics -- Unipolar and Ambipolar FETs......Page 267
Types of Nanotube Photodetectors......Page 268
Photocurrent Spectroscopy and Quantum Efficiency......Page 269
Photovoltage in Asymmetric CNTFETs --Schottky-Barrier Diodes......Page 271
Photovoltage in a CNT p--n Junction......Page 272
Photovoltage Imaging......Page 273
Ambipolar Mechanism......Page 274
Mechanism of the Spot Movement in Ambipolar Transistors......Page 275
Unipolar Mechanism for Infrared Emission......Page 276
Conclusions -- Future......Page 278
References......Page 280
Index......Page 286
Introduction......Page 287
Instrumentation for Ultrafast Spectroscopy......Page 288
Basics of Nonlinear Optics......Page 290
Metallic Tubes......Page 293
Semiconducting Tubes......Page 294
Exciton Dynamics......Page 295
Low Excitation Densities......Page 296
Radiative Lifetime......Page 297
Correlation of the PL Decay Timescales with the Tube Diameter......Page 298
Environmental and Temperature Effects on Exciton Population Dynamics......Page 299
Transient Absorption of a Chirality-Enriched SWNT Preparation......Page 302
Spectroscopic and Dynamic Signatures of High-Intensity Excitation......Page 304
Theoretical Advances......Page 308
Exciton Dissociation......Page 309
Comparison of S-SWNTs with -Conjugated Polymers......Page 310
Summary......Page 312
References......Page 313
Index......Page 319
Introduction......Page 321
Elastic Light Scattering......Page 322
Experimental Technique......Page 324
Electronic Transitions of Nanotubes of Independently Determined Structure......Page 328
Polarization Dependence of Nanotube Electronic Transitions......Page 329
Structural Stability Along the Nanotube Axis......Page 330
Nanotube--Nanotube Interactions......Page 331
Outlook......Page 332
References......Page 334
Index......Page 336
Introduction and Basic Properties......Page 339
Band Structure......Page 340
1D Transport in Nanotubes......Page 342
Contacts to Nanotubes: Schottky Barriers......Page 344
The Effect of Disorder......Page 347
Electron--Phonon Scattering in Nanotubes......Page 348
Nanotube Devices and Advanced Geometries......Page 350
High-Performance Transistors......Page 351
Radio-Frequency and Microwave Devices......Page 353
P--N Junction Devices......Page 354
Luttinger Liquid......Page 358
Superconducting Proximity Effect......Page 360
Quantum Transport with Ferromagnetic Contacts......Page 362
Nanotube Quantum Dots......Page 363
Shell Filling in Nanotube Dots......Page 364
Kondo Effects in Nanotube Dots......Page 365
Orbital and SU(4) Kondo......Page 366
Multiple Quantum Dots......Page 367
Future Directions......Page 368
References......Page 369
Index......Page 376
Introduction......Page 379
Applications and Metrology......Page 381
Synthesis......Page 382
Mechanical and Thermal Properties......Page 383
Electronic Structure and Atomic Arrangement......Page 384
Advances in Photophysics......Page 386
Transport Properties......Page 387
Related Structures......Page 388
Outlook......Page 389
Index......Page 390
Introduction......Page 391
Electronic Band Structure......Page 393
Transport Measurements in Single-Layer Graphene......Page 396
Graphene Nanoribbons......Page 399
Graphite and n-Graphene Layer Systems......Page 402
Raman D and G Bands, Double Resonance and Kohn Anomalies......Page 404
Electron--Phonon Coupling from Phonon Dispersions and Raman Linewidths......Page 407
The Raman Spectrum of Graphene and n-Graphene Layer Systems......Page 408
Doped Graphene: Breakdown of the Adiabatic Born--Oppenheimer Approximation......Page 412
Adiabatic Kohn Anomalies......Page 415
The Raman G Peak of Nanotubes......Page 416
References......Page 419
Index......Page 426
Introduction......Page 429
Applications of Carbon Nanotubes......Page 432
Carbon Nanotubes in Electronics......Page 433
Carbon Nanotubes in Energy Applications......Page 438
Carbon Nanotubes for Mechanical Applications......Page 443
Carbon-Nanotube Sensors......Page 447
Carbon Nanotubes in Field Emission and Lighting Applications......Page 452
Carbon Nanotubes for Biological Applications......Page 454
Carbon Nanotubes in Miscellaneous Applications......Page 458
Environmental and Health Effects of Carbon Nanotubes......Page 461
Conclusions......Page 462
References......Page 465
Index......Page 477
Introduction......Page 479
Introduction......Page 481
Sample Preparation......Page 482
Morphology......Page 483
Atomic Structure by HRTEM......Page 484
Intrinsic Layerline Distance Analysis......Page 486
Introduction......Page 487
Imaging the Structure and Electronic Properties of SWNTs......Page 489
Single-Electron States of SWNTs......Page 492
Defects......Page 493
Local Vibrational Spectroscopy in SWNTs......Page 494
Basic Principles......Page 495
Optical Absorption......Page 498
Resonance Raman Spectroscopy......Page 499
The Radial Breathing Mode (RBM)......Page 501
The Tangential Modes (G Band)......Page 503
Other Raman Features......Page 505
Photoluminescence......Page 506
Summary and Outlook......Page 507
References......Page 509
Index......Page 515
Ernesto Joselevich , Hongjie Dai , Jie Liu , Kenji Hata , and AlanH. Windle......Page 517
Introduction......Page 518
Chemical Vapor Deposition (CVD)......Page 519
Mass Production......Page 521
Toward Selective Synthesis......Page 522
Dry Methods......Page 523
Wet Methods......Page 524
Classification of Sorting Methods and Selective Processes......Page 525
Nondestructive Sorting......Page 526
Selective Elimination......Page 530
General Principles and Perspectives of Sorting......Page 531
Organization into Fibers......Page 532
Processing Principles......Page 533
Liquid Suspensions of Carbon Nanotubes......Page 534
Spinning Carbon Nanotube Fibers from Liquid-Crystalline Suspensions......Page 535
Wet Spinning of CNT Composite Fibers......Page 536
Dry Spinning from Carbon Nanotube Forests......Page 538
Direct Spinning from Carbon Nanotube Fibers from the CVD Reaction Zone......Page 539
Organization on Surfaces......Page 541
Supergrowth......Page 542
SWNT-Solid......Page 547
Organized Assembly of Preformed Nanotubes......Page 549
Field-Directed Growth......Page 553
Flow-Directed Growth......Page 555
Surface-Directed Growth: ``Nanotube Epitaxy''......Page 557
Patterned Growth on Surfaces......Page 563
Summary and Outlook......Page 564
References......Page 565
Index......Page 580
Introduction......Page 583
Mechanical Properties of Nanotubes: Elastic Regime......Page 585
Beyond the Elastic Regime......Page 590
Thermal Stability of Nanotubes......Page 593
Summary of Mechanical Properties and Thermal Stability......Page 595
Landauer Theory for Phonon Transport......Page 596
Quantization of Thermal Conductance......Page 598
Electron Contribution to the Thermal Conductance......Page 599
Length Effect of the Thermal Conductivity......Page 600
Influence of Defects on the Thermal Conductivity......Page 602
Diffusive Heat Transport in SWNTs......Page 603
Heat Transport in MWNTs......Page 604
Summary and Outlook......Page 606
References......Page 607
Index......Page 612
Catalin D. Spataru, Sohrab Ismail-Beigi, Rodrigo B. Capaz, and Steven G. Louie......Page 615
Introduction......Page 616
Methodology......Page 617
First-Principles Studies of the Optical Spectra of SWNTs......Page 619
Diameter and Chirality Dependence of Exciton Properties......Page 624
Symmetries and Selection Rules of Excitons......Page 626
Radiative Lifetime......Page 630
Pressure, Strain and Temperature Effects......Page 634
Related Structures: Boron-Nitride Nanotubesand Graphene Nanoribbons......Page 636
Conclusion......Page 641
References......Page 642
Index......Page 647
Effective-Mass Description......Page 649
Excitons......Page 653
Exciton Fine Structure and Aharonov--Bohm Effect......Page 656
Exciton Absorption for Crosspolarized Light......Page 660
Optical Phonons......Page 662
References......Page 666
Index......Page 669
Outline......Page 671
Overview of Resonance Raman Measurements......Page 672
Overview of the Raman Intensity Calculation......Page 673
The Radial Breathing Mode......Page 675
G-Band......Page 677
D-Band......Page 680
G-Band......Page 681
Intermediate-Frequency Modes......Page 682
Experimental Optical Transition Energies......Page 684
Extended Tight-Binding Method for Electrons and Phonons......Page 687
Dipole Approximation for the Optical Matrix Element......Page 689
Electron--Phonon Matrix Element Calculation......Page 690
Extension to the Exciton Matrix Element Calculation......Page 692
Raman Intensity Calculation......Page 695
RBM and G-Band: Length, Type, Chirality, and Diameter Dependence......Page 696
Future Directions, Summary......Page 699
References......Page 700
Index......Page 705
Introduction......Page 707
Model......Page 708
Absorption......Page 710
Photoluminescence from Isolated SWNTs......Page 711
Photoluminescence Excitation Map......Page 713
Exciton Picture......Page 716
Lineshape......Page 718
Polarization......Page 719
Quantum Efficiency......Page 720
Photoluminescence Imaging......Page 723
Time Dependence......Page 724
Phonons......Page 725
External Environment......Page 726
External Physical Parameters......Page 728
Nanotube Research......Page 730
Wider Applications......Page 732
Conclusion......Page 733
References......Page 734
Index......Page 738
Index......Page 741