Carbon nanotubes represent one of the most exciting research areas in modern science. These molecular-scale carbon tubes are the stiffest and strongest fibres known, with remarkable electronic properties, and potential applications in a wide range of fields. Carbon Nanotube Science is the most concise, accessible book for the field, presenting the basic knowledge that graduates and researchers need to know. Based on the successful Carbon Nanotubes and Related Structures, this new book focuses solely on carbon nanotubes, covering the major advances made in recent years in this rapidly developing field. Chapters focus on electronic properties, chemical and bimolecular functionalisation, nanotube composites and nanotube-based probes and sensors. The book begins with a comprehensive discussion of synthesis, purification and processing methods. With its full coverage of the state-of-the-art in this active research field, this book will appeal to researchers in a broad range of disciplines, including nanotechnology, engineering, materials science and physics.
Author(s): Peter J. F. Harris
Edition: 1st
Publisher: Cambridge University Press
Year: 2009
Language: English
Pages: 315
Cover......Page 1
Half-title......Page 3
Title......Page 5
Copyright......Page 6
Contents......Page 7
Preface......Page 13
1 Introduction......Page 15
1.1 Buckminsterfullerene......Page 16
1.2 Fullerene-related carbon nanotubes......Page 17
1.3 Single- and double-walled nanotubes......Page 19
1.4 Catalytically produced carbon nanotubes......Page 20
1.5 Who discovered carbon nanotubes?......Page 21
1.6 Carbon nanotube research......Page 22
1.7 Scope of the book......Page 24
References......Page 25
2.1.1 Early work......Page 28
2.1.2 The arc-evaporation technique: further developments......Page 30
2.1.4 Safety considerations for the arc-evaporation method......Page 32
2.2.1 General comments......Page 33
2.2.2 Vapour phase growth......Page 34
2.2.3 Liquid phase growth......Page 35
2.2.4 Solid phase growth......Page 36
2.2.5 The crystallization model......Page 37
2.3 Production of multiwalled nanotubes by high-temperature heat treatments......Page 38
2.4 Production of single-walled nanotubes by arc-evaporation......Page 41
2.5 Production of single-walled nanotubes by laser vaporization......Page 44
2.6 Growth mechanisms of SWNTs in the arc and laser methods......Page 45
2.6.1 Vapour-liquid-solid models......Page 46
2.6.2 Solid-state models......Page 48
2.7 Arc-evaporation synthesis of double-walled nanotubes......Page 50
2.8 Discussion......Page 51
References......Page 52
3 Synthesis II: catalytic chemical vapour deposition and related methods......Page 57
3.1 Catalytic synthesis of multiwalled nanotubes: pre-1991 work......Page 58
3.2 Catalytic synthesis of multiwalled nanotubes: post-1991 work......Page 60
3.2.1 Growth of aligned MWNTs on substrates......Page 62
3.2.2 Direct spinning of nanotube yarns......Page 65
3.3 Growth mechanisms of catalytically produced MWNTs......Page 66
3.4.1 Conditions required to produce SWNTs......Page 69
3.4.2 Large-scale catalytic synthesis of SWNTs......Page 72
3.4.3 Preparation of SWNT strands......Page 73
3.4.4 Directed growth of SWNTs......Page 75
3.4.5 Synthesis of SWNTs with defined structures......Page 77
3.5.1 Vapour-liquid-solid mechanisms......Page 79
3.5.2 A solid-state mechanism for CVD growth?......Page 80
3.6 Catalytic synthesis of double-walled nanotubes......Page 82
3.8 Synthesis of MWNTs by heat treatment of metal-doped carbon......Page 84
3.9 Discussion......Page 85
References......Page 86
4.1.1 MWNTs produced by arc-evaporation......Page 94
4.1.2 Catalytically-produced MWNTs......Page 95
4.2.1 Acid treatment and oxidation......Page 97
4.2.3 Physical techniques......Page 99
4.3.1 Multiwalled nanotube suspensions and assemblies of pure MWNTs......Page 100
4.3.2 Alignment and arrangement of MWNTs......Page 101
4.3.3 Pure MWNT fibres......Page 103
4.3.5 Breaking and cutting of MWNTs......Page 105
4.4.1 Alignment and arrangement of SWNTs......Page 106
4.4.2 Pure SWNT strands......Page 109
4.4.3 SWNT sheets......Page 110
4.4.4 Length control of SWNTs......Page 112
4.5.1 Selective elimination......Page 113
4.5.3 Selective functionalization......Page 114
4.6 Discussion......Page 115
References......Page 116
5.1 Bonding in carbon materials......Page 121
5.2.1 Vector notation for carbon nanotubes......Page 123
5.2.2 Unit cells of nanotubes......Page 124
5.2.3 Symmetry classification of nanotubes......Page 126
5.2.4 Defects in the hexagonal lattice......Page 128
5.2.5 The layer structure of multiwalled nanotubes......Page 130
5.2.6 Theory of nanotube capping......Page 132
5.3.1 The layer structure: experimental observations......Page 135
5.3.3 The cross-sectional shape of multiwalled nanotubes......Page 138
5.3.4 MWNT cap structure......Page 140
5.3.5 Elbow connections and branching structures......Page 141
5.4 Experimental studies: multiwalled nanotubes produced by catalysis......Page 144
5.5.1 General features......Page 146
5.5.2 Electron diffraction of SWNTs......Page 147
5.5.3 HRTEM of SWNTs......Page 150
5.5.4 Scanning tunnelling microscopy of SWNTs......Page 151
5.7 Discussion......Page 154
References......Page 155
6.1 Electronic properties of graphite......Page 160
6.2.1 Band structure of single-walled tubes......Page 162
6.2.2 Effect of curvature and of tube-tube interactions......Page 165
6.2.3 Electron transport in nanotubes......Page 166
6.2.4 Effect of a magnetic field......Page 167
6.3.1 Early studies of multiwalled nanotubes......Page 169
6.3.2 Correlation between electronic properties and structure of single-walled nanotubes......Page 170
6.3.3 Quantum conductance......Page 173
6.3.4 Electronic properties of nanotubes in a magnetic field......Page 177
6.4.1 Diodes......Page 178
6.4.2 Field effect transistors......Page 180
6.4.3 Logic circuits......Page 181
6.5 Magnetic properties of nanotubes......Page 182
6.6 Nanotube field emitters......Page 184
6.7 Conclusions......Page 186
References......Page 187
7.1.1 Theoretical predictions......Page 193
7.1.2 Experimental observations: multiwalled nanotubes......Page 196
7.2 Optical properties of nanotubes......Page 202
7.2.1 Optical absorption spectroscopy......Page 203
7.2.2 Fluorescence spectroscopy......Page 204
7.3 Raman spectroscopy......Page 206
7.4 Thermal properties of nanotubes......Page 210
7.5 The physical stability of nanotubes......Page 211
7.6 Discussion......Page 212
References......Page 213
8.1 Covalent functionalization......Page 218
8.1.1 Functionalization of nanotube ends and defects......Page 219
8.1.2 Functionalization of sidewalls......Page 220
Addition of carbenes......Page 221
Modification via 1,3-dipolar cycloaddition of azomethine ylides......Page 222
Silylation......Page 223
Attachment of Polymers......Page 224
8.2 Non-covalent functionalization......Page 225
8.4.1 Proteins......Page 228
8.4.2 Nucleic acids......Page 231
8.5 Toxicity of carbon nanotubes......Page 232
References......Page 234
9.1.1 Solution mixing......Page 241
9.1.2 Melt processing......Page 243
9.1.3 In situ polymerization......Page 244
9.1.4 Effect of nanotubes on polymer structure......Page 245
9.2.1 Mechanical properties......Page 246
9.2.2 Electrical properties......Page 249
9.3 Carbon nanotube/ceramic composites......Page 251
9.5 Carbon nanotube/metal composites......Page 253
9.6 Discussion......Page 254
References......Page 255
10.1 Filling by arc-evaporation......Page 261
10.2.1 Early work......Page 262
10.2.2 Opening by treatment with acid......Page 263
10.2.3 Filling opened tubes......Page 265
10.3 Filling catalytically-grown multiwalled nanotubes......Page 266
10.5.1 Filling with inorganic materials......Page 269
10.5.2 Filling with fullerenes: 'nano-peapods'......Page 271
10.6.1 Hydrogen......Page 277
10.6.2 Other gases......Page 278
10.7.1 Boron-carbon-nitrogen tubes......Page 279
10.7.3 Carbon-boron tubes......Page 281
10.8 Discussion......Page 282
References......Page 283
11.1.1 Preparing nanotube tips: mechanical assembly......Page 289
11.1.2 Preparing nanotube tips: chemical vapour deposition......Page 291
11.1.3 Imaging using nanotube AFM tips......Page 292
11.2 Gas sensors......Page 294
11.3 Biosensors......Page 296
11.4 Physical sensors......Page 297
References......Page 299
12.1 Highlights of carbon nanotube research......Page 303
12.2 Final thoughts......Page 306
References......Page 307
Name Index......Page 310
Subject Index......Page 313