Calculus Volume 3

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Gilbert Strang; Edwin "Jed" Herman
Edition: Web
Publisher: OpenStax
Year: 2021

Language: English

Preface
1. About OpenStax
2. About OpenStax's resources
3. About Calculus Volume 3
4. Additional resources
5. About the authors
Chapter 1. Parametric Equations and Polar Coordinates
1.1. Parametric Equations*
1.2. Calculus of Parametric Curves*
1.3. Polar Coordinates*
1.4. Area and Arc Length in Polar Coordinates*
1.5. Conic Sections*
Glossary
Chapter 2. Vectors in Space
2.1. Vectors in the Plane*
2.2. Vectors in Three Dimensions*
2.3. The Dot Product*
2.4. The Cross Product*
2.5. Equations of Lines and Planes in Space*
2.6. Quadric Surfaces*
2.7. Cylindrical and Spherical Coordinates*
Glossary
Chapter 3. Vector-Valued Functions
3.1. Vector-Valued Functions and Space Curves*
3.2. Calculus of Vector-Valued Functions*
3.3. Arc Length and Curvature*
3.4. Motion in Space*
Glossary
Chapter 4. Differentiation of Functions of Several Variables
4.1. Functions of Several Variables*
4.2. Limits and Continuity*
4.3. Partial Derivatives*
4.4. Tangent Planes and Linear Approximations*
4.5. The Chain Rule*
4.6. Directional Derivatives and the Gradient*
4.7. Maxima/Minima Problems*
4.8. Lagrange Multipliers*
Glossary
Chapter 5. Multiple Integration
5.1. Double Integrals over Rectangular Regions*
5.2. Double Integrals over General Regions*
5.3. Double Integrals in Polar Coordinates*
5.4. Triple Integrals*
5.5. Triple Integrals in Cylindrical and Spherical Coordinates*
5.6. Calculating Centers of Mass and Moments of Inertia*
5.7. Change of Variables in Multiple Integrals*
Glossary
Chapter 6. Vector Calculus
6.1. Vector Fields*
6.2. Line Integrals*
6.3. Conservative Vector Fields*
6.4. Green’s Theorem*
6.5. Divergence and Curl*
6.6. Surface Integrals*
6.7. Stokes’ Theorem*
6.8. The Divergence Theorem*
Glossary
Chapter 7. Second-Order Differential Equations
7.1. Second-Order Linear Equations*
7.2. Nonhomogeneous Linear Equations*
7.3. Applications*
7.4. Series Solutions of Differential Equations*
Glossary
Appendix A. Table of Integrals*
A.1. Basic Integrals
A.2. Trigonometric Integrals
A.3. Exponential and Logarithmic Integrals
A.4. Hyperbolic Integrals
A.5. Inverse Trigonometric Integrals
A.6. Integrals Involving a2 + u2, a > 0
A.7. Integrals Involving u2 − a2, a > 0
A.8. Integrals Involving a2 − u2, a > 0
A.9. Integrals Involving 2au − u2, a > 0
A.10. Integrals Involving a + bu, a ≠ 0
Appendix B. Table of Derivatives*
B.1. General Formulas
B.2. Trigonometric Functions
B.3. Inverse Trigonometric Functions
B.4. Exponential and Logarithmic Functions
B.5. Hyperbolic Functions
B.6. Inverse Hyperbolic Functions
Appendix C. Review of Pre-Calculus*
C.1. Formulas from Geometry
C.2. Formulas from Algebra
C.3. Formulas from Trigonometry
Solutions
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Index
CalculusVolume3.pdf
Blank Page