Calculus Volume 1

This document was uploaded by one of our users. The uploader already confirmed that they had the permission to publish it. If you are author/publisher or own the copyright of this documents, please report to us by using this DMCA report form.

Simply click on the Download Book button.

Yes, Book downloads on Ebookily are 100% Free.

Sometimes the book is free on Amazon As well, so go ahead and hit "Search on Amazon"

Author(s): Gilbert Strang; Edwin "Jed" Herman
Edition: Web
Publisher: OpenStax
Year: 2021

Language: English

Preface
1. About OpenStax
2. About OpenStax's resources
3. About Calculus Volume 1
4. Additional resources
5. About the authors
Chapter 1. Functions and Graphs
1.1. Review of Functions*
1.2. Basic Classes of Functions*
1.3. Trigonometric Functions*
1.4. Inverse Functions*
1.5. Exponential and Logarithmic Functions*
Glossary
Chapter 2. Limits
2.1. A Preview of Calculus*
2.2. The Limit of a Function*
2.3. The Limit Laws*
2.4. Continuity*
2.5. The Precise Definition of a Limit*
Glossary
Chapter 3. Derivatives
3.1. Defining the Derivative*
3.2. The Derivative as a Function*
3.3. Differentiation Rules*
3.4. Derivatives as Rates of Change*
3.5. Derivatives of Trigonometric Functions*
3.6. The Chain Rule*
3.7. Derivatives of Inverse Functions*
3.8. Implicit Differentiation*
3.9. Derivatives of Exponential and Logarithmic Functions*
Glossary
Chapter 4. Applications of Derivatives
4.1. Related Rates*
4.2. Linear Approximations and Differentials*
4.3. Maxima and Minima*
4.4. The Mean Value Theorem*
4.5. Derivatives and the Shape of a Graph*
4.6. Limits at Infinity and Asymptotes*
4.7. Applied Optimization Problems*
4.8. L’Hôpital’s Rule*
4.9. Newton’s Method*
4.10. Antiderivatives*
Glossary
Chapter 5. Integration
5.1. Approximating Areas*
5.2. The Definite Integral*
5.3. The Fundamental Theorem of Calculus*
5.4. Integration Formulas and the Net Change Theorem*
5.5. Substitution*
5.6. Integrals Involving Exponential and Logarithmic Functions*
5.7. Integrals Resulting in Inverse Trigonometric Functions*
Glossary
Chapter 6. Applications of Integration
6.1. Areas between Curves*
6.2. Determining Volumes by Slicing*
6.3. Volumes of Revolution: Cylindrical Shells*
6.4. Arc Length of a Curve and Surface Area*
6.5. Physical Applications*
6.6. Moments and Centers of Mass*
6.7. Integrals, Exponential Functions, and Logarithms*
6.8. Exponential Growth and Decay*
6.9. Calculus of the Hyperbolic Functions*
Glossary
Appendix A. Table of Integrals*
A.1. Basic Integrals
A.2. Trigonometric Integrals
A.3. Exponential and Logarithmic Integrals
A.4. Hyperbolic Integrals
A.5. Inverse Trigonometric Integrals
A.6. Integrals Involving a2 + u2, a > 0
A.7. Integrals Involving u2 − a2, a > 0
A.8. Integrals Involving a2 − u2, a > 0
A.9. Integrals Involving 2au − u2, a > 0
A.10. Integrals Involving a + bu, a ≠ 0
Appendix B. Table of Derivatives*
B.1. General Formulas
B.2. Trigonometric Functions
B.3. Inverse Trigonometric Functions
B.4. Exponential and Logarithmic Functions
B.5. Hyperbolic Functions
B.6. Inverse Hyperbolic Functions
Appendix C. Review of Pre-Calculus*
C.1. Formulas from Geometry
C.2. Formulas from Algebra
C.3. Formulas from Trigonometry
Solutions
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Index
CalculusVolume1.pdf
Blank Page
CalculusVolume1.pdf
Blank Page